Abstract
V članku opišemo vse trojice ▫$(R, r, d)$▫, ▫$R > r+d$▫, naravnih števil, za katere ima konfiguracija dveh krogov z radiji ▫$R$▫ in ▫$r$▫ ter razdaljo ▫$d$▫ med središči sklenjeno Steinerjevo verigo. To pomeni, da obstaja cilkično zaporedje ▫$n$▫ krogov, ki se dotikajo začetnih dveh krogov in se dotikajo sosednjih krogov v cikličnem zaporedju. Izkaže se, da je v primeru naravnih vrednosti ▫$R$▫, ▫$r$▫ in ▫$d$▫ dolžina ▫$n$▫ Steinerjeve verige lahko le 3, 4 ali 6.
Keywords
matematika;diofantske Steinerjeve trojice;Steinerjev porizem;Steinerjeva formula;diofantske enačbe;mathematics;dDiophantine Steiner triples;Steiner porism;Steiner identity;diophantine equations;
Data
Language: |
English |
Year of publishing: |
2010 |
Typology: |
0 - Not set |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
UDC: |
514.112:511 |
COBISS: |
15534681
|
ISSN: |
2232-2094 |
Parent publication: |
Preprint series
|
Views: |
68 |
Downloads: |
9 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Diofantske Steinerjeve trojice |
Secondary abstract: |
We describe all integer triples ▫$(R,r,d)$▫, ▫$R > r + d$▫, for which a configuration of two circles of radii ▫$R$▫ and ▫$r$▫ with the centers ▫$d$▫ apart possesses a closed Steiner chain. This means that there exists a cyclic sequence of ▫$n$▫ circles which are tangent to the starting two circles, and each of them is tangent to its two neighbors in the sequence. It appears that in the case of integer valued ▫$R$▫, ▫$r$▫ and ▫$d$▫, the only possible values for the lengths ▫$n$▫ of the Steiner chains are 3, 4 or 6. |
Secondary keywords: |
matematika;diofantske Steinerjeve trojice;Steinerjev porizem;Steinerjeva formula;diofantske enačbe; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 1-8 |
Volume: |
ǂVol. ǂ48 |
Issue: |
ǂšt. ǂ1117 |
Chronology: |
2010 |
ID: |
68345 |