diplomsko delo
Mojca Berus (Author), Tatjana Hodnik Čadež (Mentor), Vida Manfreda Kolar (Co-mentor)

Abstract

Posploševanje pri reševanju problema iz obsega

Keywords

matematični problem;strategije reševanja;obseg;merjenje;

Data

Language: Slovenian
Year of publishing:
Source: Ljubljana
Typology: 2.11 - Undergraduate Thesis
Organization: UL PEF - Faculty of Education
Publisher: [M. Berus]
UDC: 51:373.3(043.2)
COBISS: 9552969 Link will open in a new window
Views: 1104
Downloads: 230
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Generalizations a solving a problem on perimeter
Secondary abstract: The thesis Generalization at solving a problem on perimeter contains basic information on mathematical problems, generalization and the geometry topic of perimeter. It comprises an empirical and a theoretical part. In the theoretical part we presented different definitions of the (mathematical) problem by different authors, the types of mathematical problems, the course of solving problems, the factors in solving etc., and we also focused on generalization in problem solving. Since the empirical part is based on understanding the geometry topic of perimeter, we addressed this topic in the theoretical part as well. The empirical part consists of a problem involving perimeter, and an attempt at generalization by fifth grade students. By analyzing the acquired data we came to the conclusion that the students were successful in solving problems and recognized the mathematical content behind the problem. They were able to produce many different solving strategies. Difficulties arose when generalizing as the students were unable to form a rule.
Secondary keywords: mathematics;primary school;matematika;osnovna šola;
File type: application/pdf
Type (COBISS): Undergraduate thesis
Thesis comment: Univ. Ljubljana, Pedagoška fak., Razredni pouk
Pages: 117 str.
Type (ePrints): thesis
Title (ePrints): Generalizations a solving a problem on perimeter
Keywords (ePrints): matematični problem
Keywords (ePrints, secondary language): mathematical problem
Abstract (ePrints): Diplomsko delo Posploševanje pri reševanju problema iz obsega vsebuje osnovne informacije o matematičnih problemih, posploševanju in geometrijski temi obsega. Sestavljeno je iz empiričnega in teoretičnega dela. V teoretičnem delu smo predstavili različne definicije (matematičnega) problema različnih avtorjev, vrste matematičnih problemov, potek reševanja problemov, dejavnike pri reševanju …, osredotočili pa smo se tudi na posploševanje oziroma generalizacijo pri reševanju problemov. Ker empirični del temelji na poznavanju geometrijske teme obsega, smo se v teoretičnem delu posvetili tudi tej temi. Empirični del sestoji iz problema, povezanega z obsegom, ter poskusa posploševanja učencev petega razreda. Z analizo pridobljenih podatkov smo prišli do ugotovitev, da so bili učenci pri reševanju problemov uspešni in so prepoznali matematično vsebino, ki je bila v ozadju problema. Izdelali so veliko različnih strategij reševanja. Težave so se pojavile pri posploševanju, saj učenci pravila niso bili zmožni oblikovati.
Abstract (ePrints, secondary language): The thesis Generalization at solving a problem on perimeter contains basic information on mathematical problems, generalization and the geometry topic of perimeter. It comprises an empirical and a theoretical part. In the theoretical part we presented different definitions of the (mathematical) problem by different authors, the types of mathematical problems, the course of solving problems, the factors in solving etc., and we also focused on generalization in problem solving. Since the empirical part is based on understanding the geometry topic of perimeter, we addressed this topic in the theoretical part as well. The empirical part consists of a problem involving perimeter, and an attempt at generalization by fifth grade students. By analyzing the acquired data we came to the conclusion that the students were successful in solving problems and recognized the mathematical content behind the problem. They were able to produce many different solving strategies. Difficulties arose when generalizing as the students were unable to form a rule.
Keywords (ePrints, secondary language): mathematical problem
ID: 8311203