diplomsko delo
Sandra Bolta (Author), Primož Šparl (Mentor)

Abstract

V diplomskem delu obravnavamo linearne teorijo grafov. Zanimajo nas predvsem lastne vrednosti tako imenovanih matrik sosednosti danega grafa. V ta namen so v diplomskem delu predstavljeni tudi osnovni pojmi in nekateri rezultati linearne algebre, ter krajši uvod v teorijo grafov. Predstavljeni so pojmi matrike sosednosti, lastnih vrednosti ter spektra danega grafa. Obravnavana so vprašanja kako se lastnosti grafa odražajo na njegovem spektru. Izračunani so tudi spektri znanih družin grafov.

Keywords

teorija grafov;matrika sosednosti;spekter grafa;standardne družine grafov;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL PEF - Faculty of Education
Publisher: [S. Bolta]
UDC: 519.17(043.2)
COBISS: 10388297 Link will open in a new window
Views: 844
Downloads: 218
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Eigenvalues of a graph
Secondary abstract: In this BSc thesis we deal with matrix graph theory. We are interested primarily in the eigenvalues of the so-called adjacency matrix of a given graph. Because of that, we present the basic concepts and some basic results from linear algebra and a short introduction to a graph theory. We introduce the concepts of adjacency matrices, eigenvalues and the spectrum of a given graph. We investigate how the properties of a given graph reflect on its spectrum. For the well-known families of graphs we calculated their spectra.
Secondary keywords: mathematics;matematika;
File type: application/pdf
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. Ljubljana, Pedagoška fak., Fizika in matematika
Pages: 34 str.
ID: 8708423
Recommended works:
, diplomsko delo
, delo diplomskega seminarja
, magistrsko delo
, delo diplomskega seminarja