Language: | English |
---|---|
Year of publishing: | 2011 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UM FS - Faculty of Mechanical Engineering |
UDC: | 519.17 |
COBISS: | 16006745 |
ISSN: | 0020-0190 |
Views: | 52 |
Downloads: | 32 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | O povezanosti po povezavah direktnih produktov grafov |
Secondary abstract: | Let ▫$\lambda(G)$▫ be the edge connectivity of ▫$G$▫. The direct product of graphs ▫$G$▫ and ▫$H$▫ is the graph with vertex set ▫$V(G \times H) = V(G) \times V(H)$▫, where two vertices ▫$(u_1,v_1)$▫ and ▫$(u_2,v_2)$▫ are adjacent in ▫$G \times H$▫ if ▫$u_1u_2 \in E(G)$▫ and ▫$v_1v_2 \in E(H)$▫. We prove that ▫$\lambda(G \times K_n) = \min\{n(n-1)\lambda(G), (n-1)\delta(G)\}$▫ for every nontrivial graph ▫$G$▫ and ▫$n \geqslant 3$▫. We also prove that for almost every pair of graphs ▫$G$▫ and ▫$H$▫ with ▫$n$▫ vertices and edge probability ▫$p$▫, ▫$G \times H$▫ is ▫$k$▫-connected, where ▫$k=O((n/\log n)^2)$▫. |
Secondary keywords: | matematika;teorija grafov;kombinatorični problemi;povezanost;direktni produkt grafov;presečna množica; |
Type (COBISS): | Not categorized |
Pages: | str. 899-902 |
Volume: | ǂVol. ǂ111 |
Issue: | ǂiss. ǂ18 |
Chronology: | 2011 |
ID: | 8718257 |