| Language: | English |
|---|---|
| Year of publishing: | 2011 |
| Typology: | 1.01 - Original Scientific Article |
| Organization: | UM FS - Faculty of Mechanical Engineering |
| UDC: | 519.17 |
| COBISS: |
16006745
|
| ISSN: | 0020-0190 |
| Views: | 52 |
| Downloads: | 32 |
| Average score: | 0 (0 votes) |
| Metadata: |
|
| Secondary language: | Slovenian |
|---|---|
| Secondary title: | O povezanosti po povezavah direktnih produktov grafov |
| Secondary abstract: | Let ▫$\lambda(G)$▫ be the edge connectivity of ▫$G$▫. The direct product of graphs ▫$G$▫ and ▫$H$▫ is the graph with vertex set ▫$V(G \times H) = V(G) \times V(H)$▫, where two vertices ▫$(u_1,v_1)$▫ and ▫$(u_2,v_2)$▫ are adjacent in ▫$G \times H$▫ if ▫$u_1u_2 \in E(G)$▫ and ▫$v_1v_2 \in E(H)$▫. We prove that ▫$\lambda(G \times K_n) = \min\{n(n-1)\lambda(G), (n-1)\delta(G)\}$▫ for every nontrivial graph ▫$G$▫ and ▫$n \geqslant 3$▫. We also prove that for almost every pair of graphs ▫$G$▫ and ▫$H$▫ with ▫$n$▫ vertices and edge probability ▫$p$▫, ▫$G \times H$▫ is ▫$k$▫-connected, where ▫$k=O((n/\log n)^2)$▫. |
| Secondary keywords: | matematika;teorija grafov;kombinatorični problemi;povezanost;direktni produkt grafov;presečna množica; |
| Type (COBISS): | Not categorized |
| Pages: | str. 899-902 |
| Volume: | ǂVol. ǂ111 |
| Issue: | ǂiss. ǂ18 |
| Chronology: | 2011 |
| ID: | 8718257 |