Abstract
Najprej podamo nekaj definicij in izrekov o subfaktorjih in o Jonesovem indeksu. Vzpostavimo povezavo med Jonesovim indeksom in geometrijo 4-mnogoterosti. Pokažemo, da velja relacija kit samo takrat, ko sta parametra ▫$\taut$▫ in ▫$q \in \{e^\frac{2\pi}{n}, n=3,4,...\} \cup (0,\infty)$▫ povezana z Jonesovo enačbo ▫$\tau^{-1} = q + q^{-1} + 2$▫. Pokažemo, da invarianta ▫$V_L$▫ orientiranih spletov opisuje vozle v E-neskončno Cantorjevem prostoru-času. Z drugimi besedami, E-neskončno Cantorjev prostor-čas je možno konstruirati z uporabo teorije subfaktorjev in teorije vozlov.
Keywords
E-neskončno Cantorjev prostor-čas;subfaktorji;Jonesov indeks;E-infinity Cantorian space-time;subfactors;Jones' indeks;
Data
Language: |
English |
Year of publishing: |
2007 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FS - Faculty of Mechanical Engineering |
UDC: |
515.162.8:517.98 |
COBISS: |
11021334
|
ISSN: |
0960-0779 |
Views: |
890 |
Downloads: |
87 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
E-neskončno Cantorjev prostor-čas od subfaktorjev in teorije vozlov |
Secondary abstract: |
First we give some definitions and theorems about subfactors and Jones' index. Subsequently the connection between Jonesć index and the geometry of four manifolds is outlined. It is shown that the braid relation can be satisfied only when the parameters ▫$\taut$▫ and ▫$q \in \{e^\frac{2\pi}{n}, n=3,4,...\} \cup (0,\infty)$▫ are related by Jones' equation ▫$\tau^{-1} = q + q^{-1} + 2$▫. The invariant ▫$V_L$▫ of oriented links is shown to describe knots in E-infinity Cantorian space-time. In other words E-infinity may be constructed using the mathematics of subfactors and knot theory. |
Secondary keywords: |
matematika; |
URN: |
URN:SI:UM: |
Pages: |
str. 916-919 |
Volume: |
ǂVol. ǂ32 |
Issue: |
ǂiss. ǂ3 |
Chronology: |
2007 |
ID: |
8718638 |