diplomsko delo
Abstract
Diplomsko delo obravnava vozliščno pokritje k-poti v grafih. Na začetku so predstavljeni osnovni pojmi teorije grafov, ki so potrebni za razumevanje nadaljnje snovi. V diplomsko delo so vključeni pojmi NP-polnost, regularni grafi in drevesa. Konec pa vključuje vozliščna pokritja k-poti za nekatere produkte grafov. Za velikost najmanjšega vozliščnega pokritja glede na stopnjo vozlišča bodo določene zgornje in spodnje meje grafa. Izboljšani bosta zgornja in spodnja ocena za najmanjše možno število vozlišč v pokritju k-poti pri kartezičnem, krepkem in leksikografskem produktu.
Keywords
matematika;vozliščno pokritje;teorija grafov;regularni grafi;kartezični produkti;krepki produkti;leksikografski produkti;NP-polnost;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2013 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[I. Jesih] |
UDC: |
519.17(043.2) |
COBISS: |
19825928
|
Views: |
1631 |
Downloads: |
164 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
The k-path vertex cover of graphs |
Secondary abstract: |
The diploma thesis deals with the k-path vertex cover of graphs. In the beginning, we will present the basic concepts of graph theory which are essential for further understanding of the subject. There are concepts of NP-completeness, regular graphs, and trees involved in the thesis. In the conclusion the k-path vertex cover of some graph products is determined. For the minimum k-path vertex cover we will determine some lower and upper bounds of graphs in respect to its degree. Lower and upper bounds for the minimum k-path vertex cover of the Cartesian product, the strong product, and the lexicographic product will also be improved. |
Secondary keywords: |
Vertex cover;NP-completeness;regular graphs;the Cartesian product;the strong product;the lexicographic product.; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
42 f. |
ID: |
8726054 |