Povzetek

A subset ▫$S$▫ of vertices of a graph ▫$G$▫ is called a vertex ▫$k$▫-path cover if every path of order ▫$k$▫ in ▫$G$▫ contains at least one vertex from ▫$S$▫. Denote by ▫$\psi_k(G)$▫ the minimum cardinality of a vertex ▫$k$▫-path cover in ▫$G$▫. In this paper, an upper bound for ▫$\psi_3$▫ in graphs with a given average degree is presented. A lower bound for ▫$\psi_k$▫ of regular graphs is also proven. For grids, i.e. the Cartesian products of two paths, we give an asymptotically tight bound for ▫$\psi_k$▫ and the exact value for ▫$\psi_3$▫.

Ključne besede

matematika;teorija grafov;vozliščno pokritje;regularni grafi;mreže;mathematics;graph theory;vertex cover;grids;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
UDK: 519.17
COBISS: 19859464 Povezava se bo odprla v novem oknu
ISSN: 0166-218X
Št. ogledov: 351
Št. prenosov: 6
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
URN: URN:SI:UM:
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 1943-1949
Letnik: Vol. 161
Zvezek: iss. 13/14
Čas izdaje: 2013
ID: 1477049