Marko Jakovac (Avtor), Andrej Taranenko (Avtor)

Povzetek

A subset S of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. Denote by ▫$\psi_k$▫(G) the minimum cardinality of a k-path vertex cover in G. In this paper, improved lower and upper bounds for ▫$\psi_k$▫ of the Cartesian and the strong product of paths are derived. It is shown that for ▫$\psi_3$▫ those bounds are tight. For the lexicographic product bounds are presented for ▫$\psi_k$▫, moreover ▫$\psi_2$▫ and ▫$\psi_3$▫ are exactly determined for the lexicographic product of two arbitrary graphs. As a consequence the independence and the dissociation number of the lexicographic product are given.

Ključne besede

matematika;teorija grafov;vozliščno pokritje;po poteh vozliščno pokritje;disociacijsko število;neodvisnostno število;grafovski produkti;mathematics;graph theory;vertex cover;path vertex cover;dissociation number;independence number;graph products;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
UDK: 519.17
COBISS: 19464968 Povezava se bo odprla v novem oknu
ISSN: 0012-365X
Št. ogledov: 891
Št. prenosov: 14
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
URN: URN:SI:UM:
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 94-100
Letnik: ǂVol. ǂ313
Zvezek: ǂiss. ǂ1
Čas izdaje: 2013
DOI: 10.1016/j.disc.2012.09.010
ID: 1440224
Priporočena dela:
, ni podatka o podnaslovu
, ni podatka o podnaslovu
, magistrsko delo