diplomsko delo
    	
    Abstract
 
V diplomskem delu so na trikotnih algebrah obravnavana jordanska odvajanja in jordanski izomorfizmi. Trikotna algebra A je algebra, ki je izomorfna algebri oblike A M B, kjer sta A in B enotski algebri in M enotski (A; B)- bi modul. Osnovna primera trikotnih algeber sta algebra zgornje trikotnih matrik T_n(C) in gnezdna algebra T(N). Linearni preslikavi d iz algebre A v A -bi modul M pravimo jordansko odvajanje, če velja d (xy + yx) = d(x)y + xd(y) + d(y)x + yd(x) za vse x; y iz A. Jordanski homomorfiem iz algebre A v algebro B je linearna preslikava ',za katero velja ' (xy + yx) = '(x)' (y) + '(y)' (x) za vse x; y iz A. Za vsako odvajanje velja, da je tudi jordansko odvajanje. Pogoji, kadar velja tudi obrat, so predstavljeni v poglavju o jordanskih odvajanjih na trikotnih algebrah. Pokazano je, da je vsako jordansko odvajanje iz trikotne algebre A = Tri (A; M; B) vase odvajanje. V zadnjem poglavju so podani pogoji, ki morajo veljati, da sta algebra zgornje trikotnih matrik T_n(C) in gnezdna algebra T(N) nerazcepni. Trikotna algebra A = Tri (A; M; B) je nerazcepna, če modula M ni mogoče zapisati kot direktno vsoto dveh netrivialnih pod modulov. Na koncu diplomskega dela je dokazano, da je ob ustreznih predpostavkah vsak jordanski izomorfiem iz trikotne algebre A v neko drugo algebro izomofizem ali antiizomorfizem.
    Keywords
 
matematika;jordanska odvajanja;izomorfizmi;trikotne algebre;gnezdna algebra;matrična algebra;diplomska dela;
    Data
 
    
        
            | Language: | Slovenian | 
        
        
            | Year of publishing: | 2010 | 
            
        
            | Source: | Maribor | 
        
        
            | Typology: | 2.11 - Undergraduate Thesis | 
            
        
            | Organization: | UM FNM - Faculty of Natural Sciences and Mathematics | 
        
            | Publisher: | [I. Cizerl] | 
   
        
            | UDC: | 51(043.2) | 
   
        
        
            | COBISS: | 17964040   | 
        
        
  
        
            | Views: | 2264 | 
        
        
            | Downloads: | 99 | 
        
        
            | Average score: | 0 (0 votes) | 
        
            | Metadata: |                       | 
    
    
    Other data
 
    
        
            | Secondary language: | English | 
        
        
            | Secondary title: | JORDAN DERIVATIONS AND JORDAN ISOMORPHISMS ON TRIANGULAR ALGEBRAS | 
        
        
        
            | Secondary abstract: | The graduation thesis considers Jordan derivations and Jordan isomorphisms on triangular algebras. An algebra A is called a triangular algebra if it is isomorphic to the algebra of the form A M B where A and B are unital algebras and M is a unital (A; B) - bimodule. Upper triangular matrix algebras T_n(C) and nest algebras T (N) are most common examples of triangular algebras. A linear map d mapping from an algebra A into an A - bimodule M is called a Jordan derivation if d (xy + yx) = d(x)y + xd(y) + d(y)x + yd(x) for every x in A. A Jordan homomorphism from an algebra A into an algebra B is a linear map 'satisfying' (xy + yx) = '(x)' (y) + '(y)' (x) for all x; y in A: Every derivation is also a Jordan derivation. In chapter 5 we consider conditions under which the converse holds true as well. It is shown, that every Jordan derivation from a triangular algebra A = Tri (A; M; B) into itself is a derivation. In the last chapter it is shown which conditions needs to hold, that an upper triangular matrix algebra T_n(C) and a nest algebra T(N) are indecomposable. A triangular algebra A = Tri (A; M; B) is indecomposable if module M cannot be written as a direct sum of two nonzero submodules. At the end of the graduation thesis we show, that under certain assumptions every Jordan isomorphism from a triangular algebra A into some other algebra is either an isomorphism or an anti-isomorphism. | 
        
        
            | Secondary keywords: | triangular algebra;triangular matrix algebra;nest algebra;derivation;Jordan derivation;Jordan isomorphism.; | 
        
            | URN: | URN:SI:UM: | 
        
            
        
            | Type (COBISS): | Undergraduate thesis | 
        
        
           
        
           
        
           
        
           
        
            | Thesis comment: | Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo | 
        
           
        
           
        
           
        
            | Pages: | IX, 40 f. | 
        
           
        
           
        
           
        
           
        
           
        
            | Keywords (UDC): | mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; | 
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: | 8761875 |