magistrsko delo
Matej Veber (Author), Karl Gotlih (Mentor), Aleš Hace (Co-mentor)

Abstract

Z razvojem robotike v industrijskih aplikacijah se je razvilo tudi optimiranje robotskega mehanizma. Proizvajalci robotov v tehnični specifikaciji med drugim podajo karakteristike robota, kot so omejitve gibanja osi, maksimalne hitrosti osi ter dvodimenzionalen tehnološki načrt delovnega prostora robota. Pretekle raziskave so pokazale, da navedene informacije ne zadostujejo za izbiro primernega industrijskega robota. Lahko se namreč zgodi, da izbrani robot za določeno aplikacijo ustreza vsem podanim zahtevam, ko pa je dejansko integriran v tehnološki sistem, se lahko izkaže, da v določeni postavitvi in položaju robotski mehanizem ni dovolj gibljiv (ne more opraviti zastavljene naloge). Iz tega sledi, da nimamo podane zelo pomembne informacije o gibljivosti robota v priročnem delovnem prostoru. Pri opisovanju funkcionalnih lastnosti mehanizma uporabljamo različne matematične funkcije, kot so dosegljivi in priročni delovni prostor, gibljivost in ostali kinematični indeksi. Močnostna gibljivost robotskega mehanizma je nov indeks, ki podaja zmogljivost robotskih mehanizmov. Vključuje vpliv rotacij in translacij pri gibanju mehanizma, pri tem pa so enote enake. Obstoječe metode za izračun gibljivosti so fizično nekonsistentne in invariantne. Indeks močnostne gibljivosti je naraven in homogen kazalnik gibljivosti robotskega mehanizma in je fizično konsistenten. Omenjeni indeks bomo vključili v analizo gibljivosti frezalnega robota KUKA KR 150-2. Preverjanje rezultatov in izračunov sledi praktičnem delu naloge.

Keywords

robotika;robotsko frezanje;gibljivost robotskega mehanizma;index gibljivosti;togost robotskega mehanizma;delovni prostor robota;magistrske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UM FS - Faculty of Mechanical Engineering
Publisher: [M. Veber]
UDC: 004.896:621.914.3(043)
COBISS: 19820822 Link will open in a new window
Views: 1256
Downloads: 207
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: MANIPULABILITY ANALYSIS OF MILLING ROBOT KUKA KR 150-2
Secondary abstract: Development of robotics for industrial applications has resulted also in the optimisation of robotic mechanisms. Robot manufacturers in their technical specifications, among other things, specify also robot characteristics such as limitations of axis movement, maximum axis velocity, and a two-dimensional technological scheme of a robot workspace. Past research has shown that the information given does not suffice for a suitable industrial robot to be chosen. It may, namely, happen that the robot chosen for a certain application fulfills all the requirements set, however, when it is actually integrated in a technological system, it may turn out that in a certain configuration and position, the robotic mechanism is not movable enough (it cannot execute a given task). Hence it follows that a very important piece of information on the robot manipulability in the dexterous workspace is not given. A description of functional characteristics of a mechanism involves different mathematical functions such as the reachable and dexterous workspaces, manipulability, and other kinematic indices. The manipulability index can be defined as the capability for manipulability of different tool orientations for each point within a robot workspace Power manipulability of a robotic mechanism is a new index that indicates the capacity of robot mechanisms. It includes the influence of rotation and translation on mechanism motion, the physical units being the same. The existing methods for the calculation of manipulability are physically inconsistent and invariant. The power manipulability index is a natural and homogeneous indicator of the robotic mechanism manipulability; it is physically consistent. The said index will be included in an analysis of the manipulability of a milling robot KUKA KR 150-2. The results obtained and the calculations made will be verified in the practical part of the present thesis. To this purpose the robot will be used to machine test pieces in different positions of a coordinate system, i.e. within the boundaries of the dexterous workspace, limitations of a clamping table being taken into account.
Secondary keywords: robotics;robot milling;KUKA KR 150-2;robotic mechanism manipulability;manipulability index;power manipulability index;robotic mechanism rigidity;robot workspace;
URN: URN:SI:UM:
Type (COBISS): Master's thesis
Thesis comment: Univ. v Mariboru, Fak. za elekrotehniko, računalništvo in informatiko
Pages: X, 109 f.
ID: 9165867