Boris Vezjak (Author)

Abstract

V svoji Metafiziki Aristotel pogosto in eksplicitno pravi, da je Platon verjel v tretjo vrsto entitet, ki niso istovetne ne z idejami in ne s fizičnimi predmeti. To so tako imenovane “vmesne stvari” (ta metaxu). Dasitudi lahko pri Platonu zares najdemo podobna izhodišča, pa pri njem ne bomo našli neposredne potrditve za takšen pomemben in nepričakovan nauk. Ker so “vmesne stvari” izenačene z matematičnimi predmeti, nam bo sam koncept prvih pomagal razumeti značilnosti drugih. Toda čemu bi morale biti “vmesne stvari” natanko predmeti matematike? Mar ne bi smeli postulirati istega tipa vmesne entitete prav tako v vsaki drugi znanosti? V članku se dotaknem še različnih pristopov v razlagi Aristotelove obravnave Platona – je obstoj “vmesnih” stvari nekaj, kar trdi Platon, morebiti nekaj, kar je Aristotelov izum ali pa je le modifikacija platonskih idej, ki so bile pri Aristotelu uporabljene zato, da bi izboljšal svoje lastne predpostavke filozofije matematike?

Keywords

filozofija;filozofija matematike;vmesne stvari;ta metaxu;števila;ne zaključna dela;

Data

Language: Slovenian
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM PEF - Faculty of Education
Publisher: Založba ZRC
UDC: 510.3
COBISS: 15538989 Link will open in a new window
ISSN: 0353-4510
Parent publication: Filozofski vestnik
Views: 8
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Aristotle's mathematical objects as the "intermediates"
Secondary abstract: In his “Metaphysics” Aristotle often claims plainly that Plato believed in a third class of entities, which are identical neither with Forms nor with physical objects – these are the so-called intermediates (ta metaxu). But although there are passages in Plato where similar ideas seem to be indicated, nowhere does he accept this important and rather unexpected doctrine in a straightforward way. Since the intermediates are identified with mathematical objects, the very concept of the former helps us to understand the features of the latter. But why should the intermediates be exactly and only the objects of mathematics? Can't we postulate the same form of intermediate objects for every other science? In this article I also tackle different approaches to understanding Aristotle's reading of Plato: is the existence of intermediates something claimed by Plato, by Aristotle only or a kind of modification of Plato's concepts in Aristotle's work in order to overcome his own difficulties within the philosophy of mathematics?
Secondary keywords: philosophy;philosophy of mathematics;intermediates;numbers;Aristotel;384-322 pr. n. št.;Platon;427?-347? pr. n. št.;Filozofija;Matematika;Filozofija matematike;
Type (COBISS): Article
Pages: str. 27-44
Volume: ǂLetn. ǂ21
Issue: ǂšt. ǂ1
Chronology: 2000
ID: 9257127
Recommended works:
, no subtitle data available
, za ontologijo izobilja
, ǂthe ǂphilosophy of mathematics