Berislav Buča (Avtor), Juan P. Garrahan (Avtor), Tomaž Prosen (Avtor), Matthieu Vanicat (Avtor)

Povzetek

We study the statistical properties of the long-time dynamics of the rule 54 reversible cellular automaton (CA), driven stochastically at its boundaries. This CA can be considered as a discrete-time and deterministic version of the Fredrickson-Andersen kinetically constrained model (KCM). By means of a matrix product ansatz, we compute the exact large deviation cumulant generating functions for a wide range of time-extensive observables of the dynamics, together with their associated rate functions and conditioned long-time distributions over configurations. We show that for all instances of boundary driving the CA dynamics occurs at the point of phase coexistence between competing active and inactive dynamical phases, similar to what happens in more standard KCMs. We also find the exact finite size scaling behavior of these trajectory transitions, and provide the explicit “Doob-transformed” dynamics that optimally realizes rare dynamical events.

Ključne besede

neravnovesna statistična mehanika;celični avtomati;nonequilibrium statistical physics;cellular automata;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.9
COBISS: 3354468 Povezava se bo odprla v novem oknu
ISSN: 2470-0045
Št. ogledov: 657
Št. prenosov: 706
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: neravnovesna statistična mehanika;celični avtomati;
Strani: str. 020103-1-020103-6
Letnik: ǂVol. ǂ100
Zvezek: ǂiss. ǂ2
Čas izdaje: 2019
DOI: 10.1103/PhysRevE.100.020103
ID: 11228384