Bruno Bertini (Avtor), Lorenzo Piroli (Avtor)

Povzetek

We study the scrambling of quantum information in local random unitary circuits by focusing on the tripartite information proposed by Hosur et al. We provide exact results for the averaged Rényi-2 tripartite information in two cases: (i) the local gates are Haar random and (ii) the local gates are dual-unitary and randomly sampled from a single-site Haar-invariant measure. We show that the latter case defines a one-parameter family of circuits, and prove that for a “maximally chaotic” subset of this family quantum information is scrambled faster than in the Haar-random case. Our approach is based on a standard mapping onto an averaged folded tensor network, that can be studied by means of appropriate recurrence relations. By means of the same method, we also revisit the computation of out-of-time-ordered correlation functions, rederiving known formulas for Haar-random unitary circuits, and presenting an exact result for maximally chaotic random dual-unitary gates.

Ključne besede

neravnovesna statistična mehanika;kvantni kaos;nonequilibrium statistical mechanics;quantum chaos;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.93
COBISS: 43003139 Povezava se bo odprla v novem oknu
ISSN: 2469-9950
Št. ogledov: 265
Št. prenosov: 262
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: neravnovesna statistična mehanika;kvantni kaos;
Strani: str. 064305-1-064305-25
Letnik: ǂVol. ǂ102
Zvezek: ǂiss. ǂ6
Čas izdaje: 2020
DOI: 10.1103/PhysRevB.102.064305
ID: 12345753