Povzetek

We study the question of the existence of infinitely many weak solutions for nonlocal equations of fractional Laplacian type with homogeneous Dirichlet boundary data, in presence of a superlinear term. Starting from the well-known Ambrosetti-Rabinowitz condition, we consider different growth assumptions on the nonlinearity, all of superlinear type. We obtain three different existence results in this setting by using the Fountain Theorem, which extend some classical results for semilinear Laplacian equations to the nonlocal fractional setting.

Ključne besede

fractional Laplacian;nonlocal problems;variational method;Fountain theorem;integrodifferential operator;superlinear nonlinearities;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL PEF - Pedagoška fakulteta
UDK: 517.95
COBISS: 17671001 Povezava se bo odprla v novem oknu
ISSN: 0933-7741
Št. ogledov: 577
Št. prenosov: 404
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 1095-1110
Letnik: ǂVol. ǂ28
Zvezek: ǂiss. ǂ6
Čas izdaje: 2016
DOI: 10.1515/forum-2015-0204
ID: 11231241