Povzetek
In this paper, we are concerned with the existence and multiplicity of solutions for the fractional Choquard-type Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity: ▫$$\begin{cases} \varepsilon^{2s} N([u]^2_{s,A}) (-\Delta)^s_A u + V(x)u = (|x|^{-\alpha} \ast F(|u|^2)) f(|u|^2)u + |u|^{2^\ast_s-2}u, & x\in \mathbb{R}^N, \\ U(x) \to 0, & \text{as} \quad |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_A$▫ is the fractional magnetic operator with ▫$0 0$▫ is a positive parameter. The electric potential ▫$V \in C(\mathbb{R}^N, \mathbb{R}^+_0)$▫ satisfies ▫$V(x)=0$▫ in some region of ▫$\mathbb{R}^N$▫, which means that this is the critical frequency case. We first prove the ▫$(PS)_c$▫ condition, by using the fractional version of the concentration compactness principle. Then, applying also the mountain pass theorem and the genus theory, we obtain the existence and multiplicity of semiclassical states for the above problem. The main feature of our problems is that the Kirchhoff term ▫$M$▫ can vanish at zero.
Ključne besede
Choquard-type equation;critical nonlinearity;fractional magnetic operator;variational method;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2020 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
UDK: |
517.956 |
COBISS: |
18870617
|
ISSN: |
0170-4214 |
Št. ogledov: |
468 |
Št. prenosov: |
289 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
str. 2473-2490 |
Letnik: |
ǂVol. ǂ43 |
Zvezek: |
ǂiss. ǂ5 |
Čas izdaje: |
March 2020 |
DOI: |
10.1002/mma.6057 |
ID: |
11763917 |