master's thesis
Povzetek
In this work we discuss girth-regular and edge-girth-regular graphs. The signature of a vertex u in a graph is a k-tuple of integers, ordered from the smallest to the largest, where each integer represents the number of girth cycles that contain an edge, incident with u. We say that a graph is girth-regular, if every vertex has the same signature. If every edge is contained in the same number of girth cycles, the graph is edge-girth-regular. We present the known results about girth-regular and edge-girth-regular graphs, classify cubic graphs of both types up to girth 5, look at tetravalent edge-girth-regular graphs and present some constructions of infinite families of such graphs. We then present some new results on tetravalent edge-girth-regular graphs and the classification of tetravalent edge-girth-regular Cayley graphs of Abelian groups.
Ključne besede
mathematics;graphs;girth;girth-regular;edge-girth-regular;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2019 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[A. Zavrtanik Drglin] |
UDK: |
519.1 |
COBISS: |
18739289
|
Št. ogledov: |
1178 |
Št. prenosov: |
240 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarni naslov: |
Ožinsko-regularni in povezavno-ožinsko-regularni grafi |
Sekundarni povzetek: |
Magistrska naloga obravnava ožinsko-regularne in povezavno-ožinsko-regularne grafe. Podpis vozlišča u v grafu je k-terica celih števil, urejenih po velikosti od najmanjšega do največjega, kjer vsako število predstavlja število ožinskih ciklov, v katerih je vsebovana posamezna povezava, incidenčna z u. Pravimo, da je graf ožinsko-regularen (oz. tipa GR), če imajo vsa vozlišča v grafu enak podpis. Če velja, da je vsaka povezava v grafu vsebovana v enakem številu ožinskih ciklov, pravimo, da je graf povezavno-ožinsko-regularen (oz. tipa EGR). V delu predstavimo že znane rezultate o grafih tipa GR in EGR, posebej natančno pregledamo kubične grafe obeh tipov in tetravalentne grafe tipa EGR ter nekaj konstrukcij neskončnih družin takih grafov. Nato predstavimo nekaj novih rezultatov o grafih tipa EGR in klasifikacijo vseh tetravalentnih Cayleyevih grafov Abelovih grup – kaj mora veljati, da je tak graf lahko tipa EGR, ter v koliko ožinskih ciklih se potemtakem lahko nahaja vsaka povezava tega grafa. |
Sekundarne ključne besede: |
matematika;grafi;ožina;ožinsko-regularen;povezavno-ožinsko-regularen; |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
Strani: |
XI, 62 str. |
ID: |
11238051 |