Bruno Bertini (Avtor), Pavel Kos (Avtor), Tomaž Prosen (Avtor)

Povzetek

We provide exact results for the dynamics of local-operator entanglement in quantum circuits with two-dimensional wires featuring ultralocal solitons, i.e. single-site operators which, up to a phase, are simply shifted by the time evolution. We classify all circuits, allowing for ultralocal solitons and show that only dual-unitary circuits can feature moving ultralocal solitons. Then, we rigorously prove that if a circuit has an ultralocal soliton moving to the left (right), the entanglement of local operators initially supported on even (odd) sites saturates to a constant value and its dynamics can be computed exactly. Importantly, this does not bound the growth of complexity in chiral circuits, where solitons move only in one direction, say to the left. Indeed, in this case we observe numerically that operators on the odd sublattice have unbounded entanglement. Finally, we present a closed-form expression for the local-operator entanglement entropies in circuits with ultralocal solitons moving in both directions. Our results hold irrespectively of integrability.

Ključne besede

kvantna prepletenost;kubiti;večdelčni sistemi;entanglement;qubits;quantum many-body systems;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 530.145
COBISS: 14722819 Povezava se bo odprla v novem oknu
ISSN: 2542-4653
Št. ogledov: 499
Št. prenosov: 255
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna prepletenost;kubiti;večdelčni sistemi;
Strani: 23 str.
Letnik: ǂVol. ǂ8
Zvezek: ǂart. no. ǂ068
Čas izdaje: Apr. 2020
DOI: 10.21468/SciPostPhys.8.4.068
ID: 11670867