Bruno Bertini (Avtor), Pavel Kos (Avtor), Tomaž Prosen (Avtor)

Povzetek

The entanglement in operator space is a well established measure for the complexity of the quantum many-body dynamics. In particular, that of local operators has recently been proposed as dynamical chaos indicator, i.e. as a quantity able to discriminate between quantum systems with integrable and chaotic dynamics. For chaotic systems the local-operator entanglement is expected to grow linearly in time, while it is expected to grow at most logarithmically in the integrable case. Here we study local-operator entanglement in dual-unitary quantum circuits, a class of "statistically solvable" quantum circuits that we recently introduced. We identify a class of "completely chaotic" dual-unitary circuits where the local-operator entanglement grows linearly and we provide a conjecture for its asymptotic behaviour which is in excellent agreement with the numerical results. Interestingly, our conjecture also predicts a "phase transition" in the slope of the local-operator entanglement when varying the parameters of the circuits.

Ključne besede

kvantna prepletenost;kvantni kaos;večdelčni sistemi;entanglement;quantum chaos;quantum many-body systems;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 530.145
COBISS: 14721795 Povezava se bo odprla v novem oknu
ISSN: 2542-4653
Št. ogledov: 695
Št. prenosov: 264
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna prepletenost;kvantni kaos;večdelčni sistemi;
Strani: 28 str.
Letnik: ǂVol. ǂ8
Zvezek: ǂart. no. ǂ067
Čas izdaje: Apr. 2020
DOI: 10.21468/SciPostPhys.8.4.067
ID: 11670866