Povzetek

We consider a Dirichlet problem driven by the anisotropic ▫$(p, q)$▫-Laplacian and a reaction with gradient dependence (convection). The presence of the gradient in the source term excludes from consideration a variational approach in dealing with the qualitative analysis of this problem with unbalanced growth. Using the frozen variable method and eventually a fixed point theorem, the main result of this paper establishes that the problem has a positive smooth solution.

Ključne besede

anisotropic (p, q)-Laplacian;convection;nonvariational problem;nonlinear regularity theory;maximum principle;fixed point;minimal positive solution;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 69174531 Povezava se bo odprla v novem oknu
ISSN: 0951-7715
Št. ogledov: 358
Št. prenosov: 84
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Strani: str. 5319-5343
Letnik: ǂVol. ǂ34
Zvezek: ǂno. ǂ8
Čas izdaje: Aug. 2021
DOI: 10.1088/1361-6544/ac0612
ID: 13153741