na študijskem programu 2. stopnje Matematika
Maja Lešnik (Avtor), David Gajser (Mentor)

Povzetek

Praštevila predstavljajo osnovne gradnike naravnih števil. Kljub svoji preprosti definiciji ta števila že več kot 2500 let ostajajo uganka. Že starogrški matematiki so opazili skrivnosti teh števil. Še nekoliko več zanimanja so med matematiki doživela v 17. in 18. stoletju, v času Fermata, Eulerja, Gaussa in drugih matematikov tistega časa. Danes pa so nepogrešljiv del kriptografije. V prvem delu magistrskega dela je predstavljena zgodovina praštevil, izpostavljene so ključne prelomnice v spoznavanju le-teh, opisana je njihova vloga v sodobnem času. V drugem delu je predstavljeno, kako podrobno praštevila spoznajo dijaki po učnem načrtu in več načinov dokazovanja, da je praštevil neskončno. Zapisanih je nekaj izrekov, ki niso več del učnega načrta, znanje le-teh služi kot priprava za reševanje tekmovalnih nalog te tematike. Zbrani so podatki, kako pogosto se v zadnjih desetih letih tema obravnava v raziskovalnih nalogah in na kratko so povzete glavne matematične ideje v njih. Predstavljeni so podatki, kolikokrat se je v zadnjih desetih letih znanje o praštevilih pojavilo na matematičnih tekmovanjih v osnovnih ali srednjih šolah. Rešenih je nekaj tipov tekmovalnih nalog. V zadnjem delu je predstavljenih še nekaj vprašanj in domnev. Nekatera izmed njih že vrsto let ostajajo odprta.

Ključne besede

magistrska dela;praštevila;kriptografija;Evklid;Fermatov izrek;kongruence;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
Založnik: [M. Lešnik]
UDK: 511(043.2)
COBISS: 78456323 Povezava se bo odprla v novem oknu
Št. ogledov: 384
Št. prenosov: 49
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Prime numbers for high school students
Sekundarni povzetek: Prime numbers represent the basic building blocks of natural numbers. Despite their simple definition, these numbers have remained a mystery for more than 2,500 years. Already ancient Greek mathematicians noticed the secrets of these numbers. Slightly more interest was experienced among mathematicians in the 17th and 18th centuries, during the time of Fermat, Euler, Gauss, and other mathematicians of the time. The first part of the master's thesis contains some history of prime numbers, highlights key milestones in learning about them and describes their role in modern times. The second part presents what students learn about the prime numbers according to the curriculum and describes several ways of proving that there are infinity many prime numbers. Some theorems that are no longer part of the curriculum are presented. They serve as a preparation for solving competitive tasks on this topic. Data is collected on how often in the last ten years the topic was discussed in high school student research papers and whether in the last ten years the knowledge of prime numbers has also appeared in mathematical competitions in primary or secondary schools. The last part of these thesis presents some questions and assumptions, that still remain open.
Sekundarne ključne besede: master theses;prime numbers;cryptography;Evklid;Fermat theorem;congruence;Praštevila;Tajnopisje;Fermatov izrek;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Magistrsko delo/naloga
Komentar na gradivo: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Strani: XI, 33 f.
ID: 13309745
Priporočena dela:
, na študijskem programu 2. stopnje Matematika
, magistrsko delo
, delo diplomskega seminarja
, filozofski relativizem