Povzetek
This paper deals with the following degenerate fractional Kirchhoff-type system with magnetic fields and critical growth: ▫$$\begin{aligned} \left\{ \begin{array}{lll} -\mathfrak{M}(\Vert u\Vert _{s,A}^2)[(-\Delta )^s_Au+u] = G_u(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|u|^{p^*}\right) |u|^{p^*-2}u \ &{}\text{ in }\,\,\mathbb {R}^N,\\ \mathfrak{M}(\Vert v\Vert _{s,A})[(-\Delta )^s_Av+v] = G_v(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|v|^{p^*}\right) |v|^{p^*-2}v \ &{}\text{ in }\,\,\mathbb{R}^N, \end{array}\right. \end{aligned}$$▫ where ▫$$\begin{aligned}\Vert u\Vert _{s,A}=\left( \iint _{\mathbb{R}^{2N}}\frac{|u(x)-e^{i(x-y)\cdot A(\frac{x+y}{2})}u(y)|^2}{|x-y|^{N+2s}}{\text{d}}x {\text{d}}y+\int _{\mathbb{R}^N}|u|^2{\text {d}}x\right) ^{1/2},\end{aligned}$$▫ and ▫$(-\Delta )_{A}^s$▫ and ▫$A$▫ are called magnetic operator and magnetic potential, respectively, ▫$\mathfrak{M}: \mathbb{R}^{+}_{0}\rightarrow \mathbb{R}^{+}_0$▫ is a continuous Kirchhoff function, ▫$\mathcal{I}_\mu (x) = |x|^{N-\mu }$▫ with ▫$0<\mu
Ključne besede
fractional Kirchhoff-type system;upper critical exponent;concentration-compactness principle;variational method;multiple solutions;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2022 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
UDK: |
517.956 |
COBISS: |
112532995
|
ISSN: |
1660-5446 |
Št. ogledov: |
50 |
Št. prenosov: |
10 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Vrsta dela (COBISS): |
Članek v reviji |
Konec prepovedi (OpenAIRE): |
2023-08-01 |
Strani: |
art. 170 (23 str.) |
Letnik: |
ǂVol. ǂ19 |
Zvezek: |
ǂiss. ǂ4 |
Čas izdaje: |
Aug. 2022 |
DOI: |
10.1007/s00009-022-02076-5 |
ID: |
15776717 |