Povzetek
We propose the Sachdev-Ye-Kitaev Lindbladian as a paradigmatic solvable model of dissipative many-body
quantum chaos. It describes N strongly coupled Majorana fermions with random all-to-all interactions, with
unitary evolution given by a quartic Hamiltonian and the coupling to the environment described by M quadratic
jump operators, rendering the full Lindbladian quartic in the Majorana operators. Analytical progress is possible
by developing a dynamical mean-field theory for the Liouvillian time evolution on the Keldysh contour. By
disorder-averaging the interactions, we derive an (exact) effective action for two collective fields (Green’s
function and self-energy). In the large-N, large-M limit, we obtain the saddle-point equations satisfied by the
collective fields, which determine the typical timescales of the dissipative evolution, particularly the spectral gap
that rules the relaxation of the system to its steady state. We solve the saddle-point equations numerically and
find that, for strong or intermediate dissipation, the system relaxes exponentially, with a spectral gap that can be
computed analytically, while for weak dissipation, there are oscillatory corrections to the exponential relaxation.
In this letter, we illustrate the feasibility of analytical calculations in strongly correlated dissipative quantum
matter.
Ključne besede
fizika kondenzirane snovi;močno korelirani sistemi;kvantni kaos;condensed matter physics;strongly-correlated systems;quantum chaos;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2022 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
UDK: |
538.9 |
COBISS: |
120644611
|
ISSN: |
2643-1564 |
Št. ogledov: |
23 |
Št. prenosov: |
19 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarne ključne besede: |
fizika kondenzirane snovi;močno korelirani sistemi;kvantni kaos; |
Vrsta dela (COBISS): |
Znanstveno delo |
Strani: |
str. L022068-1-L022068-8 |
Letnik: |
ǂVol. ǂ4 |
Zvezek: |
ǂiss. ǂ2 |
Čas izdaje: |
2022 |
DOI: |
10.1103/PhysRevResearch.4.L022068 |
ID: |
16411114 |