Lucas (Avtor), Pedro Ribeiro (Avtor), Tomaž Prosen (Avtor)

Povzetek

We propose the Sachdev-Ye-Kitaev Lindbladian as a paradigmatic solvable model of dissipative many-body quantum chaos. It describes N strongly coupled Majorana fermions with random all-to-all interactions, with unitary evolution given by a quartic Hamiltonian and the coupling to the environment described by M quadratic jump operators, rendering the full Lindbladian quartic in the Majorana operators. Analytical progress is possible by developing a dynamical mean-field theory for the Liouvillian time evolution on the Keldysh contour. By disorder-averaging the interactions, we derive an (exact) effective action for two collective fields (Green’s function and self-energy). In the large-N, large-M limit, we obtain the saddle-point equations satisfied by the collective fields, which determine the typical timescales of the dissipative evolution, particularly the spectral gap that rules the relaxation of the system to its steady state. We solve the saddle-point equations numerically and find that, for strong or intermediate dissipation, the system relaxes exponentially, with a spectral gap that can be computed analytically, while for weak dissipation, there are oscillatory corrections to the exponential relaxation. In this letter, we illustrate the feasibility of analytical calculations in strongly correlated dissipative quantum matter.

Ključne besede

fizika kondenzirane snovi;močno korelirani sistemi;kvantni kaos;condensed matter physics;strongly-correlated systems;quantum chaos;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 538.9
COBISS: 120644611 Povezava se bo odprla v novem oknu
ISSN: 2643-1564
Št. ogledov: 23
Št. prenosov: 19
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: fizika kondenzirane snovi;močno korelirani sistemi;kvantni kaos;
Vrsta dela (COBISS): Znanstveno delo
Strani: str. L022068-1-L022068-8
Letnik: ǂVol. ǂ4
Zvezek: ǂiss. ǂ2
Čas izdaje: 2022
DOI: 10.1103/PhysRevResearch.4.L022068
ID: 16411114