Povzetek

In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration–compactness principle for variable exponent under suitable assumptions on the nonlinearities.

Ključne besede

Kirchhoff-type problems;Neumann boundary conditions;p(x)-Laplacian operator;generalized capillary operator;Sobolev spaces with variable exponent;critical Sobolev exponents;concentration–compactness principle;critical point theory;truncation technique;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 144015107 Povezava se bo odprla v novem oknu
ISSN: 1687-2770
Št. ogledov: 86
Št. prenosov: 40
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 19 (33 str.)
Zvezek: ǂVol. ǂ2023
Čas izdaje: Dec. 2022
DOI: 10.1186/s13661-023-01705-6
ID: 18187492