Povzetek
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form: ▫$\begin{cases} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u & \mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} & \mbox{in}\ \Omega, \\ u = \phi = 0 & \mbox{on}\ \partial\Omega, \end{cases}$▫ where ▫$a, b$▫ are positive real numbers, ▫$\Omega\subset \mathbb{H}^N$▫ is a bounded region with smooth boundary, ▫$1 < p < Q$▫, ▫$Q = 2N + 2$▫ is the homogeneous dimension of the Heisenberg group ▫$\mathbb{H}^N$▫, ▫$Q^{\ast} = \frac{pQ}{Q-p}$▫, ▫$q\in(2p, Q^{\ast})$▫ and ▫$\Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u)$▫ is the ▫$p$▫-horizontal Laplacian. Under some appropriate conditions for the parameters ▫$\mu$▫ and ▫$\lambda$▫, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).
Ključne besede
Kirchhoff-Schrödinger-Poisson systems;Heisenberg groups;p-Laplacian operators;critical growth;concentration-compactness principle;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2023 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL PEF - Pedagoška fakulteta |
UDK: |
517.956.2 |
COBISS: |
163051011
|
ISSN: |
2688-1594 |
Št. ogledov: |
27 |
Št. prenosov: |
5 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
str. 5749-5765 |
Letnik: |
ǂVol. ǂ31 |
Zvezek: |
ǂno. ǂ9 |
Čas izdaje: |
2023 |
DOI: |
10.3934/era.2023292 |
ID: |
19888173 |