diplomsko delo
Feliks Fortuna (Avtor), Dejan Lavbič (Mentor)

Povzetek

S hitro rastjo uporabe umetne inteligence in strojnega učenja se podjetja soočajo z izzivi implementacije in vzdrževanja modelov v produkcijskem okolju. MLOps je metodologija, ki združuje principe DevOps in naslavlja specifične potrebe strojnega učenja s ciljem avtomatizacije, standardizacije in učinkovitega upravljanja celotnega življenjskega cikla modelov strojnega učenja. V diplomski nalogi smo raziskali vlogo MLOps pri razvoju programske opreme ter izvedli praktično primerjavo z DevOps pristopom na primeru razvoja sistema za napovedovanje zmagovalcev kolesarskih dirk, medtem ko smo druge metodologije razvoja primerjali s teoretičnega vidika. Raziskava je pokazala, da MLOps pristop prinaša številne prednosti pri razvoju sistemov strojnega učenja predvsem v smislu avtomatizacije, sledljivosti in zanesljivosti modelov, medtem ko DevOps ostaja primernejši za projekte z redkejšimi posodobitvami modelov in za okolja z omejenimi računalniškimi viri. Rezultati te raziskave predstavljajo pomemben referenčni okvir za organizacije pri načrtovanju in optimizaciji razvojnih procesov sistemov strojnega učenja.

Ključne besede

MLOps;DevOps;metodologije;razvoj programske opreme;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [F. Fortuna]
UDK: 004.4:004.85(043.2)
COBISS: 232114691 Povezava se bo odprla v novem oknu
Št. ogledov: 124
Št. prenosov: 90
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: The Role of MLOps in Software Development
Sekundarni povzetek: As organizations increasingly adopt artificial intelligence and machine learning, they face significant challenges in production model deployment and maintenance. MLOps emerges as a methodology that integrates DevOps principles with machine learning requirements to streamline model lifecycle management through automation and standardization. In this thesis, we conducted a practical comparison between MLOps and DevOps approaches by implementing a cycling race prediction system, while theoretically analyzing other development methodologies. Our findings demonstrate that MLOps offers superior advantages for machine learning systems through enhanced automation, traceability, and reliability, though DevOps remains better suited for projects with infrequent model updates and limited computational resources. This research provides organizations with a valuable framework for optimizing their machine learning development processes.
Sekundarne ključne besede: MLOps;DevOps;methodologies;machine learning;software development;computer and information science;diploma;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 1 spletni vir (1 datoteka PDF (79 str.))
ID: 26084260