Povzetek
Manual assignment of Universal Decimal Classification (UDC) codes is time-consuming and inconsistent as digital library collections expand. This study evaluates 17 large language models (LLMs) as UDC classification recommender systems, including ChatGPT variants (GPT-3.5, GPT-4o, and o1-mini), Claude models (3-Haiku and 3.5-Haiku), Gemini series (1.0-Pro, 1.5-Flash, and 2.0-Flash), and Llama, Gemma, Mixtral, and DeepSeek architectures. Models were evaluated zero-shot on 900 English and Slovenian academic theses manually classified by professional librarians. Classification prompts utilized the RISEN framework, with evaluation using Levenshtein and Jaro–Winkler similarity, and a novel adjusted hierarchical similarity metric capturing UDC’s faceted structure. Proprietary systems consistently outperformed open-weight alternatives by 5–10% across metrics. GPT-4o achieved the highest hierarchical alignment, while open-weight models showed progressive improvements but remained behind commercial systems. Performance was comparable between languages, demonstrating robust multilingual capabilities. The results indicate that LLM-powered recommender systems can enhance library classification workflows. Future research incorporating fine-tuning and retrieval-augmented approaches may enable fully automated, high-precision UDC assignment systems.
Ključne besede
universal decimal classification;large language models;conversational systems;recommender systems;prompt engineering;zero-shot classification;hierarchical similarity;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2025 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko |
Založnik: |
MDPI AG |
UDK: |
004.8 |
COBISS: |
243245571
|
ISSN: |
2076-3417 |
Št. ogledov: |
0 |
Št. prenosov: |
5 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarne ključne besede: |
univerzalna decimalna klasifikacija;jezikovni modeli;hierarhična podobnost;priporočljivi sistemi; |
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
23 str. |
Letnik: |
ǂVol. ǂ15 |
Zvezek: |
ǂiss. ǂ14, [article no.] 7666 |
Čas izdaje: |
2025 |
DOI: |
10.3390/app15147666 |
ID: |
26760440 |