diplomsko delo
Mihaela Remic (Avtor), Matija Cencelj (Mentor), Tadej Starčič (Komentor)

Povzetek

V elementarni geometriji je eden najpomembnejših izrekov o geometriji trikotnikov Cevov izrek. Cevov izrek podaja kriterij, kdaj množica treh Cevovih premic, po ena skozi vsako oglišče in točko nasprotiležne stranice danega trikotnika, tvori šop. Routhov izrek je neke vrste posplošitev Cevovega izreka, saj v primeru, da dane Cevove premice ne tvorijo šopa, poda razmerje ploščin danega trikotnika in trikotnika, ki ga dobimo s presečišči Cevovih premic. V diplomskem delu predstavimo in dokažemo Routhov izrek s pomočjo Menelajevega izreka. V zadnjem delu diplomskega dela pa predstavimo še posplošitev Routhovega izreka za primer, ko imamo šest Cevovih premic, po en par premic skozi vsako oglišče danega trikotnika.

Ključne besede

trikotnik;Cevov izrek;ploščina trikotnika;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL PEF - Pedagoška fakulteta
Založnik: [M. Remic]
UDK: 514(043.2)
COBISS: 11120457 Povezava se bo odprla v novem oknu
Št. ogledov: 899
Št. prenosov: 171
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Routh's theorem
Sekundarni povzetek: The Ceva's theorem is one of the most important theorems in elementary geometry. This theorem provides criteria under which a set of three Ceva's line segments, one through each vertex and a point of opposite lying side of the given triangle are concurrent. The Routh's theorem is a kind of generalization of the Ceva's theorem. When the given Ceva's lines are not concurrent, the Routh's theorem gives the ratio between the areas of the given triangle and the triangle, which we get with the intersection of the Ceva's lines. In this work we present and prove the Routh's theorem with the help of the Menelauses' theorem. In the last part of this work we present the generalization of the Routh's theorem to the case when six Ceva's line segments are given, one pair through each vertex of the given triangle.
Sekundarne ključne besede: mathematics;matematika;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. v Ljubljani, Pedagoška fak., Matematika in fizika
Strani: VIII, [60] str.
ID: 9165363
Priporočena dela:
, diplomsko delo
, diplomsko delo
, na študijskem programu 2. stopnje Matematika