diplomsko delo
Jan Henčič (Avtor), Damjan Strnad (Mentor)

Povzetek

Diplomsko delo obravnava tematiko strojnega učenja s pomočjo uporabe umetnih nevron- skih mrež. Te so po svojih sposobnostih in načinu delovanja zelo podobne delovanju človeških možganov. Imajo sposobnost akumuliranja znanja s tako imenovanim postop- kom ”učenja”, hkrati pa so sposobne to znanje tudi shranjevati. Pravilnost delovanja mrež se s postopkom učenja, ki se ponavlja iterativno, povečuje. Ena izmed glavnih težav pri učenju nevronskih mrež je pojav prekomernega prileganja, ki se kaže v tem, da mreža ne posplošuje dobro iz učne na testno množico vzorcev. Za preprečevanje tega pojava je bilo razvitih več tehnik, katerih uporaba, učinkovitost in primerjava je predmet pričujočega diplomskega dela.

Ključne besede

umetne nevronske mreže;vzvratno razširjanje;prekomerno prileganje;regularizacija;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Založnik: J. Henčič
UDK: 004.85.032.26(043.2)
COBISS: 20869142 Povezava se bo odprla v novem oknu
Št. ogledov: 1111
Št. prenosov: 128
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Overfitting prevention in training of multilayer neural networks
Sekundarni povzetek: This thesis deals with the subject of machine learning by using artificial neural networks. They are very similar to the human brain in their abilities and way of functioning. They have the capacity to accumulate knowledge through the so-called “learning” process, but they are also able to store this knowledge. The accuracy of artificial neural networks is increased in the process of learning, which is repeated iteratively. One of the main problems in this process is the emergence of overfitting. This is because the network does not generalize well from the learning to the test set. To prevent this phenomenon several different techniques have been developed, the application and effectiveness of which have been analyzed and compared in the present thesis.
Sekundarne ključne besede: artificial neural network;backpropagation;overfitting;regularization;
URN: URN:SI:UM:
Vrsta dela (COBISS): Diplomsko delo/naloga
Komentar na gradivo: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Strani: VIII, 29 f.
ID: 10859140