diplomsko delo
Povzetek
V diplomskem delu obravnavamo diedrsko grupo, njene lastnosti in strukturo ter diedrske simetrije različnih objektov. Diedrska grupa je ena najenostavnejših končnih grup. Ker v nasprotju s ciklično grupo ni komutativna, pa je struktura podgrup diedrske grupe bolj zanimiva.
Pred samo vpeljavo pojma diedrske grupe najprej ponovimo osnovne pojme iz teorije grup in iz evklidske geometrije, ki jih potrebujemo v nadaljevanju. Nato definiramo diedrsko grupo kot grupo izometrij evklidske ravnine, ki ohranjajo pravilni n-kotnik. Poiščemo vse njene elemente in jih razvrstimo v konjugiranostne razrede. Nato opišemo tudi abstraktno karakterizacijo diedrske grupe in preučimo strukturo njenih podgrup. Za konec pa si ogledamo še nekaj konkretnih matematičnih ter ne-matematičnih objektov z diedrsko simetrijo.
Ključne besede
grupa;pravilni n-kotnik;zrcaljenje;izometrija;rotacija;diedrska grupa;faktor;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2017 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL PEF - Pedagoška fakulteta |
Založnik: |
[M. Glavan] |
UDK: |
51(043.2) |
COBISS: |
11711561
|
Št. ogledov: |
1038 |
Št. prenosov: |
245 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Dihedral symmetry |
Sekundarni povzetek: |
In this BCs thesis we describe the dihedral group, its structure and properties, and find certain objects which have dihedral symmetry. Dihedral group is one of the simplest finite groups. Since it is non-commutative, the structure of subgroups of the dihedral group is more interesting than that of the cyclic group.
Before introducing the concept of the dihedral group, we make a short review of the basic notions from group theory and from the euclidean geometry that will be used in the thesis. Then we define the dihedral group as the group of isometries of the euclidean plane which preserve a regular $n$-gon. We list all its elements and classify them into conjugacy classes. We also find an abstract characterization of the dihedral group and examine the structure of its subgroups. To conclude, we list some concrete mathematical and non-mathematical objects which have dihedral symmetry. |
Sekundarne ključne besede: |
mathematics;matematika; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Diplomsko delo/naloga |
Komentar na gradivo: |
Univ. Ljubljana, Pedagoška fak., Dvopredmetni učitelj |
Strani: |
37 str. |
ID: |
10864985 |