Marko Medenjak (Avtor), C. Karrasch (Avtor), Tomaž Prosen (Avtor)

Povzetek

We establish a general connection between ballistic and diffusive transport in systems where the ballistic contribution in the canonical ensemble vanishes. A lower bound on the Green-Kubo diffusion constant is derived in terms of the curvature of the ideal transport coefficient, the Drude weight, with respect to the filling parameter. As an application, we explicitly determine the lower bound on the high-temperature diffusion constant in the anisotropic spin-1/2 Heisenberg chain for anisotropy parameters Δ≥1, thus, settling the question of whether or not the transport is subdiffusive. Additionally, the lower bound is shown to saturate the diffusion constant for a certain classical integrable model.

Ključne besede

statistična fizika;statistical physics;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: American Physical Society
UDK: 536.9
COBISS: 3177828 Povezava se bo odprla v novem oknu
ISSN: 0031-9007
Št. ogledov: 1001
Št. prenosov: 691
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: statistična fizika;
Strani: str. 080602-1-080602-5
Letnik: ǂVol. ǂ119
Zvezek: ǂiss. ǂ8
Čas izdaje: 2017
DOI: 10.1103/PhysRevLett.119.080602
ID: 10915629