Ivan Kukuljan (Avtor), Sašo Grozdanov (Avtor), Tomaž Prosen (Avtor)

Povzetek

Out-of-time-ordered correlation functions (OTOCs) are presently being extensively debated as quantifiers of dynamical chaos in interacting quantum many-body systems. We argue that in quantum spin and fermionic systems, where all local operators are bounded, an OTOC of local observables is bounded as well and thus its exponential growth is merely transient. As a better measure of quantum chaos in such systems, we propose, and study, the density of the OTOC of extensive sums of local observables, which can exhibit indefinite growth in the thermodynamic limit. We demonstrate this for the kicked quantum Ising model by using large-scale numerical results and an analytic solution in the integrable regime. In a generic case, we observe the growth of the OTOC density to be linear in time. We prove that this density in general, locally interacting, nonintegrable quantum spin and fermionic dynamical systems exhibits growth that is at most polynomial in time—a phenomenon, which we term weak quantum chaos. In the special case of the model being integrable and the observables under consideration quadratic, the OTOC density saturates to a plateau.

Ključne besede

kvantna mehanika;teorija kaosa;quantum mechanics;quantum chaos;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: American Physical Society
UDK: 530.145
COBISS: 3179364 Povezava se bo odprla v novem oknu
ISSN: 2469-9950
Št. ogledov: 1192
Št. prenosov: 575
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna mehanika;teorija kaosa;
Strani: str. 060301-1-060301-6
Letnik: ǂVol. ǂ96
Zvezek: ǂiss. ǂ6
Čas izdaje: 2017
DOI: 10.1103/PhysRevB.96.060301
ID: 10915643