PhD thesis
Povzetek
An impressive improvement of the effectiveness of medical care evident in the recent decades
is to a large extent driven by the progress made in the fields of medical imaging and
analysis. A hallmark characteristic of this trend is the transition from a purely visual,
qualitative assessment of the medical images to a computational and more quantitative
assessment, which involves in vivo image-based measurements. In the domains of disease
diagnosis and monitoring, treatment efficacy assessment, but also in surgery and radiotherapy
planning and execution, the clinical workflow is becoming increasingly dependent
on image-derived measurements (i.e. imaging biomarkers). Some of the quantitative imaging
biomarkers have already become well established as surrogates of clinical outcomes.
The values of these imaging biomarkes may directly impact the decision-making process
| hence, the accuracy and precision of the methods that extract the measurements from
the images need to be rigorously validated.
Problems of objective validation and comparison of measurement methods feature prominently
in the medical imaging discourse. In registration and segmentation | the two
major fields of image analysis, the state of the art of method validation and comparison
is based on reference measurements usually requiring some human involvement. In case
of registration it is the detection and manual localization of fiducial markers. For segmentation it is the manual delineation of anatomical structures by expert radiologists.
Certain problems are inherent in this approach: humans are subjective { measurements
by different experts usually disagree, they are error prone | they get distracted and
tired, and their time is costly. When human errors in validation standards propagate to
medical practice they acquire a potential to cause costly damages. The patients, medical care establishments and the economy at large are all impacted by the consequences of
these errors.
Strategies to predicting and preventing the measurement errors and cutting the costs associated with validation and comparison of measurement methods are discussed in this
Thesis. A direct strategy to alleviate the costs of the burdensome manual reference creation
is through automation. Such strategy was applied in the first contribution of this
Thesis using a novel automated computational approach to gold standard reference dataset
creation for validating rigid-body registration of pre-operative 3D and intra-operative
2D images. Therein, the use of automatic image analysis pipeline eliminated the need for
human interaction and manual input, previously required in a semi-automated approach.
This has significantly improved the registration accuracy as validated on intra-operatively
acquired 3D and 2D images of twenty patients with cerebral aneurysms and arteriovenous
malformations.
A different, more inventive, strategy is to validate the measurement methods without
ever creating a reference, through advanced statistical inference. Two new reference-free
Bayesian frameworks for estimating the systematic and random errors of an ensemble
of (automated) measurement methods, are developed in this Thesis. They facilitate the
validation and comparison of measurement methods without requiring costly reference
measurements. A clear advantage of this strategy is that it eliminates the need for the
reference measurements altogether and therefore annihilates the associated costs. For
instance, in the image analysis domain, applying several automated methods to a certain
dataset requires only computational resources, which is much cheaper than engaging an
expert to manually create the reference. The two proposed frameworks were successfully
validated on several synthetic and on relevant clinical datasets, involving imaging
biomarkers of neurological diseases. Theoretical developments of one of the proposed
frameworks allow to use it for advanced applications of estimation of latent true values
of an unobserved quantity and selection of best predictors for it from a set of related
biomarkers.
In conclusion, the contributions of this Thesis do not only solve the practical problems
of reference creation, but address the conceptual problems associated with reference based
error estimation. The two proposed and validated Bayesian frameworks represent
important theoretical advances in the emerging field of reference-free error estimation,
making this methodology practical for measurement method validation, comparison and
further beyond | for selection of best predictors of unobservable quantities and the their
estimation.
Ključne besede
-;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2018 |
Tipologija: |
2.08 - Doktorska disertacija |
Organizacija: |
UL FE - Fakulteta za elektrotehniko |
Založnik: |
[H. Madan] |
UDK: |
004.93:61(043.3) |
COBISS: |
12105812
|
Št. ogledov: |
970 |
Št. prenosov: |
235 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarni naslov: |
OCENJEVANJE NAPAK KVANTITATIVNE ANALIZE MEDICINSKIH SLIK |
Sekundarni povzetek: |
Izjemen napredek v učinkovitosti medicinske oskrbe v zadnjih desetletjih v veliki meri
poganjajo napredki v povezanih in vzporednih področjih medicinskih slikovnih tehnologij
in računalniške analize slik. Ena izmed poglavitnih značilnosti tega trenda je prehod iz
povsem vizualnega, kvalitativnega vrednotenja medicinskih slik v bolj računsko in kvantitativno vrednotenje. Slednje vključuje predvsem in vivo meritve računsko izluščene iz
medicinskih slik. V kontekstu diagnoze in spremljanja razvoja bolezni ter vrednotenja
učinkovitosti zdravljenja, pa tudi v kontekstu načrtovanja in izvedbe kirurških posegov
ter radioterapije, klinični protokoli in smernice vedno bolj temeljijo na meritvah iz medicinskih slik (i.e. slikovni biomarkerji). Nekateri slikovnih biomarkerji so se že uveljavili
kot nadomestki kliničnih ciljev. Vrednosti slikovnih biomarkerjev torej lahko neposredno
vplivajo na odločanje v omenjenih kliničnih kontekstih | zato mora biti natančnost in
točnost postopkov izločanja slikovnih biomarkerjev rigorozno validirana.
Problematika objektivnega vrednotenja in primerjave postopkov merjenja je zelo izražena
na področju medicinskih slikovnih tehnologij. Pri poravnavi in razgradnji slik | dveh
glavnih metodoloških pristopov k analizi medicinskih slik, so uveljavljeni načini validacije
in primerjave sposobnosti teh postopkov osnovani na uporabi referenčnih meritev. Referenčne meritve običajno pridobimo ročno s pomočjo eksperta. Pri poravnavi slik je to
lahko očno zaznavanje in ročno označevanje oslonilnih markerjev na slikah, pri razgradnji
pa je to na primer ročno obrisovanje anatomskih struktur, kar lahko naredi izkušen radiolog.
V tem procesu je kritičen subjektiven doprinos posameznega eksperta | različni
eksperti bodo izluščili različne vrednosti meritev, izključena ni niti možnost večjih napak
in razhajanj, kot posledica utrujenosti in naključnih dejavnikov. čas, ki ga porabi ekspert je tudi zelo drag. Potencialno zelo drage so lahko tudi posledice prej omenjenih
napak in razhajanj v meritvah, ker vplivajo na medicinsko prakso in lahko povzročijo
resne posledice. Tako bolniki, kot bolnišnice in družba nasploh lahko čutijo posledice teh
napak.
Razprava in razvoj strategij za napovedovanje in preprečevanje merilnih napak in hkratno
zmanjševanje stroškov pri validaciji in primerjavi postopkov merjenja predstavljajo
jedro te doktorske disertacije. Direktna strategija manjšanja stroškov je preko manjšanja
bremena bremena ustvarjanja reference, kar lahko dosežemo z avtomatizacijo. Zato je
prvi prispevek te disertacije nov avtomatski računski pristop za ustvarjanje reference
oziroma zlatega standarda za validacijo toge poravnave med pred-operativnimi 3D in
med-operativnimi 2D slikami. Z uporabo verige avtomatskih postopkov analize slik smo
odpravili potrebo po interakciji z operaterjem in morebitne ročne vnose, kar je bilo sicer
potrebno pri predhodnem pol-avtomatskem pristopu. Na ta način smo signikantno
izboljšali natančnost referenčne poravnave, kot kažejo rezultati validacije pristopa na
med-operativno zajetih 3D in 2D slikah dvajsetih bolnikov z možganskimi anevrizmami
in arteriovenoznimi malformacijami.
Povsem drugačna in bolj inovativna strategija je validacija postopkov merjenja brez uporabe
reference, in sicer z uporabo naprednega statističnega sklepanja. V disertaciji predlagamo
dva nova Bayesianska pristopa za oceno sistematičnih in naključnih napak množice
(avtomatskih) postopkov merjenja neke količine. Naprimer, v kontekstu slikovnih biomarkerjev
je stroškovno precej bolj učinkovito na določeni zbirki slik uporabiti več različnih
avtomatskih postopkov analize medicinskih slik kot pa pridobiti referenco s pomočjo eksperta.
Pristopa smo uspešno validirali na več sintetičnih in kliničnih zbirkah podatkov,
kjer so slednje vključevale meritve slikovnih biomarkerjev nevroloških bolezni. Teoretična
dognanja v enem izmed predlaganih pristopov omogočajo tudi ocenjevanje vrednosti latentne
količine in hkratno izbiro najboljših napovednih meritev te količine.
Prispevki te disertacije ne le rešujejo praktične probleme pri ustvarjanju reference, pač
pa naslavljajo tudi prikrite konceptualne probleme kot je napaka reference. Dva predlagana
in validirana Bayesianska računska pristopa predstavljata pomembne teoretične
preskoke v okviru novonastalega področja ocenjevanja napake brez reference in s katerima
je ta postala praktično uporabna za namen validacije in primerjave sposobnosti postopkov
merjenja nasplošno. še več, eden izmed pristopov omogoča tudi določanje napovedni
vrednosti meritev glede na latentno količino in tudi oceno njene vrednosti. |
Sekundarne ključne besede: |
medicinske slike;kvantitativna analiza slik;ocenjevanje napak;analiza medicinskih slik;disertacije;Medicinske slike;Disertacije;Analiza; |
Vrsta dela (COBISS): |
Doktorsko delo/naloga |
Študijski program: |
1000319 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Strani: |
XX, 104 str. |
ID: |
10949221 |