delo diplomskega seminarja
Eva Erzin (Avtor), Alen Orbanić (Mentor), Bogdan Filipič (Komentor)

Povzetek

Večkriterijski optimizacijski problemi so del vsakdana. Včasih jih uspemo rešiti sami, včasih pa so prezahtevni in za to potrebujemo pomoč. Dober pristop k reševanju večkriterijskih optimizacijskih problemov so genetski algoritmi. V tem delu se ukvarjamo z večkriterijskimi optimizacijskimi problemi z omejitvami. Najprej jih definiramo in opišemo njihovo rešitev - Pareto optimalno množico. Nato predstavimo genetske algoritme, si podrobneje ogledamo dva izmed njih, NSGA-II in MOEA/D ter pregledamo obstoječe načine obravnavanja omejitev v večkriterijski optimizaciji, s katerimi lahko genetske algoritme za večkriterijsko optmizacijo prilagodimo tako, da lahko obravnavajo tudi probleme z omejitvami. Na koncu predstavimo še dva testna večkriterijska optimizacijska problema z omejitvami, na njima preizkusimo prej predstavljena algoritma ter dva izmed načinov obravnavanja omejitev in rezultate interpretiramo.

Ključne besede

matematika;večkriterijska optimizacija z omejitvami;genetski algoritmi;NSGA-II;MOEA/D;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [E. Erzin]
UDK: 519.8
COBISS: 18437465 Povezava se bo odprla v novem oknu
Št. ogledov: 991
Št. prenosov: 254
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Constraint handling in multiobjective optimization
Sekundarni povzetek: Multiobjective optimization problems are a part of everyday life. Sometimes we manage to solve them and other times they prove to be too difficult and we need help solving them. A good approach to solving multiobjective optimization problems are genetic algorithms. In this work we deal with constrained multiobjective problems. First we describe them and their solution - the Pareto front. Then we present genetic algorithms, desribe two of them, NSGA-II and MOEA/D, more in-depth and review existing constraint handling methods, that allow us to adapt existing multiobjective genetic algorithms for constrained multiobjective optimization. Finally we present two multiobjective constrained test problems, use them to test the beforementioned genetic algorithms and two of the constraint handling techniques, and interpret the results.
Sekundarne ključne besede: mathematics;constrained multiobjective optimization;genetic algorithms;NSGA-II;MOEA/D;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 25 str.
ID: 10959927