delo diplomskega seminarja
Tjaša Bajc (Avtor), Marjetka Krajnc (Mentor)

Povzetek

V delu diplomskega seminarja bomo obravnavali interpolacijo štirih točk v ravnini s parametrično podano parabolično krivuljo. Dokazali bomo izrek, ki povezuje število interpolacijskih krivulj skozi dane točke z obliko lika, katerega oglišča so te točke, in opisali praktično konstukcijo interpolacijske krivulje na primerih. Istega problema se bomo lotili še s pomočjo kubičnih Lagrangeevih baznih polinomov, ki jim bomo s pravilno izbiro prostih parametrov znižali stopnjo in tako dobili parabolično krivuljo. Obravnavali bomo Hermitov problem, torej problem interpolacije dveh točk in tangentnih vektorjev v teh točkah s parabolično krivuljo, nazadnje pa bomo numerično izračunali red konvergence pri aproksimaciji parametrično podanih krivulj s paraboličnimi krivuljami.

Ključne besede

matematika;parabolične krivulje;interpolacija;Vandermondova matrika;Lagrangeevi polinomi;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [T. Bajc]
UDK: 519.6
COBISS: 18456665 Povezava se bo odprla v novem oknu
Št. ogledov: 968
Št. prenosov: 190
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Geometric four-point parabolic interpolation
Sekundarni povzetek: In this thesis we present the solution to four-point parabolic interpolation problem. The theorem that shows how the number of interpolation curves is related to the shape of the quadrilateral that has the given points as its vertices is proven and the construction of the interpolant in some practical examples is described. The same problem is solved again with a different approach, that is with cubic Lagrange polynomials. We find such parameters that lower the interpolant’s degree to obtain a parabolic curve. Furthermore, the Hermite’s problem is discussed, where we find a parabolic interpolant for two points and two tangent vectors. Lastly, we numerically calculate the convergence rate for approximation of parametrically given curves with parabolic curves.
Sekundarne ključne besede: mathematics;parabolic curves;interpolation;Vandermonde matrix;Lagrange polynomials;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 27 str.
ID: 10961425