diplomsko delo
Povzetek
V diplomskem delu se ukvarjamo predvsem z vprašanjem, katere podmnožice realnih števil so lahko množice točk nezveznosti neke realne funkcije ene spremenljivke. Pokažemo, da je množica točk nezveznosti vedno števna unija zaprtih množic, kar na primer pomeni, da ne obstaja realna funkcija, ki bi bila nezvezna natanko na množici iracionalnih števil. To pokažemo s pomočjo Bairovega izreka o kategorijah. Na koncu diplomskega dela pokažemo, da je limita po točkah zaporedja zveznih funkcij vedno zvezna na precej veliki množici.
Ključne besede
zvezne funkcije;funkcije z omejeno variacijo;goste množice;nikjer goste množice;Bairov izrek;množice nezveznosti funkcij;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2018 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL PEF - Pedagoška fakulteta |
Založnik: |
[A. Kos] |
UDK: |
51(043.2) |
COBISS: |
12149577
|
Št. ogledov: |
415 |
Št. prenosov: |
78 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Discontinuity sets of real functions |
Sekundarni povzetek: |
In this diploma thesis, we are interested in understanding which subsets of real numbers can be sets of discontinuity of a real function of one variable. We show that any set of discontinuity is a countable union of closed sets, which, for example, excludes the possibility of an existence of a real function that is discontinuous precisely at irrational numbers. This is shown as an application of the Baire category theorem. In the last part of the thesis we show that the pointwise limit of a sequence of continuous functions is always continuous on a large subset of real numbers. |
Sekundarne ključne besede: |
mathematics;matematika; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Diplomsko delo/naloga |
Komentar na gradivo: |
Univ. v Ljubljani, Pedagoška fak., Dvopredmetni učitelj: Matematika in računalništvo |
Strani: |
21 str. |
ID: |
10973399 |