magistrsko delo
Povzetek
V magistrskemu delu se ukvarjamo z znano družino precej simetričnih grafov. To
so tako imenovani Cayleyjevi grafi. V zvezi z njimi je zanimivo vprašanje o obstoju
hamiltonskih poti oziroma hamiltonskih ciklov v takšnih grafih. Cayleyjevi grafi so grafi,
katerih vozlišča so elementi dane grupe, povezave pa so dane s pomočjo tako imenovane
povezavne množice. Hamiltonska pot je pot, ki obišče vsa vozlišča danega grafa, vsako
natanko enkrat. Podobno je hamiltonski cikel cikel, ki vsebuje vsa vozlišča danega grafa.
Glavna tema magistrskega dela je vprašanje, ali med poljubnima vozliščema v Cayleyjevem
grafu komutativne oziroma abelske grupe obstaja hamiltonska pot ali ne. Govorimo
o hamiltonski povezanosti grafa. Pri tem natančno preučimo in analiziramo rezultate
Chena in Quimpa iz članka [6].
Na začetku si podrobneje pogledamo, kako je z obstojem hamiltonskih poti v kartezi
čnemu produktu dveh poti ali cikla in poti. S pomočjo pridobljenih rezultatov potem
analiziramo obstoj hamiltonskih poti med poljubnimi vozlišči v Cayleyjevih grafih komutativnih
grup, saj v njih najdemo takšne vpete podgrafe. Rezultate nato posplošimo še na
Cayleyjeve grafe komutativnih grup, ki so dvodelni. Slednji so zanimivi predvsem zato,
ker z eno izjemo niso hamiltonsko povezani. Namesto tega so lahko hamiltonsko vezljivi,
kjer zahtevamo hamiltonske poti le med poljubnimi vozlišči iz različnih delov dvodelnega
razbitja. Na koncu si pogledamo še katere znane družine grafov so v resnici Cayleyjevi
grafi komutativnih grup in zato zanje lahko uporabimo omenjeni izrek. Dodatno omenimo
še Johnsonove grafe in si pogledamo, kako je z njihovo hamiltonsko povezanostjo.
Na kratko komentiramo tudi pomembnost in uporabnost izreka [6], ki ga v svojih člankih
kot ključni vir navajajo številni avtorji.
Ključne besede
Cayleyjev graf;hamiltonski cikel;hamiltonska pot;hamiltonska povezanost;hamiltonska vezljivost;komutativna (abelska) grupa;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2018 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL PEF - Pedagoška fakulteta |
Založnik: |
[A. Petek] |
UDK: |
51(043.2) |
COBISS: |
12224073
|
Št. ogledov: |
543 |
Št. prenosov: |
106 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Hamiltonian connectedness of Cayley graphs of abeliangroups |
Sekundarni povzetek: |
In the master thesis we are dealing with a very well known family of graphs with a
lot of symmetry, namely with the so-called Cayley graphs. Regarding them there is an
interesting question about the existence of hamiltonian paths and hamiltonian cycles in
such graphs. Cayley graphs are graphs whose vertices are elements of a given group, while
the edges are given via a suitable generating set. A hamiltonian path of a graph is path
that visits all the vertices of a given graph, each exactly once. Similarly, a hamiltonian
cycle is a cycle that consists of all the vertices of a given graph.
The main topic of this thesis is the question about the existence of hamiltonian paths
between any two vertices in Cayley graphs of abelian groups. Graphs with this property
are said to be hamiltonian connected. In the process, we thoroughly study the results of
Chen and Quimpo from the article [6].
At the beginning we study the existence of hamiltonian paths in cartesian products
of two paths or of a cycle and a path. With the help of the obtained results we then
analyze the existence of hamiltonian paths between any two vertices in Cayley graphs of
abelian groups, since we can �nd such spanning subgraphs in these graphs. The results
are then generalized to Cayley graphs of abelian groups which are bipartite. The latter
are particularly interesting because they are not generally hamiltonian connected. Instead
of that they are hamiltonian laceable, where we only demand hamiltonian paths between
two vertices from di�erent parts of the bipartition. Finally, we present same well-known
graph families which are in fact Cayley graphs of abelian groups, and therefore we can
use the above theorem for their members. Additionally, we mention Johnson's graphs
and their hamiltonian connectedness. We also brie
y comment on the importance and
usefulness of the results from [6], which are mentioned by many authors in their articles
as a key step in their proofs. |
Sekundarne ključne besede: |
mathematics;matematika; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Komentar na gradivo: |
Univ. v Ljubljani, Pedagoška fak., Poučevanje, Predmetno poučevanje |
Strani: |
74 str. |
ID: |
10990584 |