Povzetek

In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian ▫$A_{1/2}$▫ in a smooth bounded domain ▫$\Omega\subset \mathbb{R}^n$▫ (▫$n\geq 2$▫) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation ▫$$ \left\{ \begin{array}{ll} A_{1/2}u=\lambda f(u) & \mbox{ in } \Omega\\ u=0 & \mbox{ on } \partial\Omega. \end{array}\right. $$▫ The existence of at least two non-trivial ▫$L^{\infty}$▫-bounded weak solutions is established for large value of the parameter ▫$\lambda$▫ requiring that the nonlinear term ▫$f$▫ is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method.

Ključne besede

fractional Laplacian;variational methods;multiple solutions;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.951.6
COBISS: 18407513 Povezava se bo odprla v novem oknu
ISSN: 1937-1632
Št. ogledov: 520
Št. prenosov: 170
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 151-170
Letnik: ǂVol. ǂ12
Zvezek: ǂiss. ǂ2
Čas izdaje: Apr. 2019
DOI: 10.3934/dcdss.2019011
ID: 11193865