Kathryn B. Andrist (Avtor), Dennis Garity (Avtor), Dušan Repovš (Avtor), David Wright (Avtor)

Povzetek

We introduce new general techniques for computing the geometric index of a link ▫$L$▫ in the interior of a solid torus ▫$T$▫. These techniques simplify and unify previous ad hoc methods used to compute the geometric index in specific examples and allow a simple computation of geometric index for new examples where the index was not previously known. The geometric index measures the minimum number of times any meridional disc of ▫$T$▫ must intersect ▫$L$▫. It is related to the algebraic index in the sense that adding up signed intersections of an interior simple closed curve ▫$C$▫ in ▫$T$▫ with a meridional disc gives ▫$\pm$▫ the algebraic index of ▫$C$▫ in ▫$T$▫. One key idea is introducing the notion of geometric index for solid chambers of the form ▫$B^2 \times I$▫ in ▫$T$▫. We prove that if a solid torus can be divided into solid chambers by meridional discs in a specific (and often easy to obtain) way, then the geometric index can be easily computed.

Ključne besede

algebraic index;geometric index;Whitehead link;Bing link;McMillan link;Gabai link;Antoine link;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 515.124
COBISS: 18167129 Povezava se bo odprla v novem oknu
ISSN: 1660-5446
Št. ogledov: 395
Št. prenosov: 296
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 237 (15 str.)
Letnik: ǂVol. ǂ14
Zvezek: ǂiss. ǂ6
Čas izdaje: 2017
DOI: 10.1007/s00009-017-1036-1
ID: 11216345