magistrsko delo
Povzetek
V nalogi so na kratko opisani satelitski podatki s poudarkom na satelitih Sentinel-2 ter definicija časovne vrste. Opisane so tehnologije, ki omogočajo prenos satelitskih podatkov preko spleta. Primerjali smo izbrano metodo pridobivanja maske oblakov , uporabljeno na portalu Sentinel-hub, z drugimi v stroki razširjenimi metodami. Na kratko smo opisali metode glajenja časovnih vrst Savitzky-Golay oz. LOESS ter Whittaker-Eilers. Podali smo tri različne vegetacijske indekse in sicer NDVI, EVI in EVI2. V nalogi smo podali enostaven način pridobivanja podatkov s programskim jezikom Python. Opisali smo način shranjevanja podatkov časovnih vrst v SQLite in Spatialite datotečni podatkovni bazi. Primerjali smo metode glajenja časovnih vrst vegetacijskih indeksov glede na to, kako različne vrednosti parametrov pri funkcijah glajenja vplivajo na obliko časovnih vrst. Primerjali smo trende zglajene časovne vrste na treh različnih vegetacijskih indeksih. Nato smo podali način grajenja vektorjev iz časovnih vrst, ki se lahko uporabijo v različnih metodah strojnega učenja. Na koncu smo za demonstracijo podanega sistema izvedli klasifikacijo. Za potrebe naloge smo napisali knjižnico za programski jezik Python, ki je javno objavljena in omogoča enostavno pridobivanje in shranjevanje podatkov časovnih vrst satelitov Sentinel-2.
Ključne besede
geodezija;magistrska dela;Sentinel-2;časovne vrste;Python;Spatialite;klasifikacija;glajenje;vegetacijski indeksi;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2019 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL FGG - Fakulteta za gradbeništvo in geodezijo |
Založnik: |
B. Lipuš] |
UDK: |
528.7/.8:582(497.4)(043.3) |
COBISS: |
8887649
|
Št. ogledov: |
978 |
Št. prenosov: |
309 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Sentinel-2 time series analysis on vector data |
Sekundarni povzetek: |
In this thesis, we have described satellite data with emphasis on Sentinel-2 satellites. We showed definition of time series and methods for their collection over internet. We compared cloud mask algorithm, used and developed for sentinel-hub portal, with other commonly used cloud mask algorithms. We gave short description of Saviztky-Golay, LOESS and Whittaker-Eilers signal smoothing algorithms with NDVI, EVI and EVI2 vegetation indices. In the second part of the thesis, we provide a simplified way for getting and storing generalised raster statistical data in Python programming language and Spatialite database. We compared two series smoothing methods concerning input smoothing parameters. Similarly, we compared time series of three smoothed vegetation indices. In the end, we provided method for building comparable vectors and demonstrated our program on simple SVM classification model. For this thesis, we written program in Python, which is freely available online and simplifies work with Sentinel-2 time series. |
Sekundarne ključne besede: |
geodesy;master thesis;Sentinel-2;time series;Python;Spatialite;classification;smoothing;vegetation indicies; |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Študijski program: |
0 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za gradbeništvo in geodezijo |
Strani: |
XIV, 36 str., 1 pril. |
ID: |
11222804 |