delo diplomskega seminarja
Jan Rudof (Avtor), Marjetka Krajnc (Mentor)

Povzetek

V diplomski nalogi se osredotočimo na izpeljavo metode podpornih vektorjev. Najprej se lotimo matematične izpeljave za linearno ločljive podatke, za katere lahko najdemo optimalno ločitveno hiperravnino, ki nam vedno loči podatke v dva razreda. Model nato razširimo na linearno neločljive podatke, kjer pride do problema, saj ni možno najti hiperravnine, ki bi nam optimalno ločila podatke v dva razreda. Uvedemo kazenske spremenljivke in raven šuma, s katerim nadziramo napačno grupirane podatke in tako dovolimo nekaterim podatkom, da padejo v napačni razred. Metodo lahko uporabimo tudi na nelinearnih podatkih, pri čemer moramo za izračun optimalne ločitvene hiperravnine definirati nove funkcije, imenovane jedra. Metodo podpornih vektorjev nato uporabimo na praktičnem primeru. Uporabimo zgodovinske podatke vrednosti delnic 34 tehnoloških podjetij, na katere apliciramo metodo podpornih vektorjev za napovedovanje vrednosti delnic v nekem trenutku v prihodnosti. Napovemo lahko, ali bo vrednost delnice narasla ali padla. S pomočjo te metode nato izračunamo verjetnosti pravilnih napovedi.

Ključne besede

finančna matematika;metoda podpornih vektorjev;klasifikacijska funkcija;mejni pas;napovedovanje vrednosti delnic;jedra;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [J. Rudof]
UDK: 519.8
COBISS: 18816857 Povezava se bo odprla v novem oknu
Št. ogledov: 1221
Št. prenosov: 280
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Support vector machines for data grouping and regression
Sekundarni povzetek: In this thesis we focus on derivation of the support vector machines. We begin with a mathematical derivation for linearly separable data, where we can easily find the optimal separable hyperplane that always separates the data into two classes. We then extend our model to linearly inseparable data, where the problem occurs since it is not possible to find a hyperplane that optimally separates the data into two classes. For this reason we introduce penalty variables and a cost parameter by which we control wrongly clustered data, thus allowing some data to fall into the wrong class. The method can also be used on nonlinear data, where we define new functions, called kernels, to calculate the optimal separation hyperplane. The support vector machines is further used in the practical example. We use historical stock's values of 34 technology companies, on which we apply the support vector machine method to predict the stock's values at a certain point in the future. In our case, we can only predict whether the stock's value will rise or fall. Using the presented method, we can then calculate probabilities of correct forecasts.
Sekundarne ključne besede: support vector machines;classification function;margin;stock forecasting;kernel functions;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Strani: 32 str.
ID: 11223585