diplomsko delo
Jasmina Pegan (Avtor), Marko Robnik Šikonja (Mentor), Polona Gantar (Komentor)

Povzetek

Cilj diplomske naloge je razvoj klasifikatorja za prepoznavo protipomenk. Za izdelavo rešitve je bila uporabljena baza vnaprej pripravljenih vektorskih vložitev besed za slovenščino. Najprej smo sestavili učno množico protipomenk in sopomenk. Sledilo je iskanje čimbolj ustreznega klasifikacijskega modela. Ogledali smo si nekaj modelov metode podpornih vektorjev in nekaj globokih nevronskih mrež. Izbranim besedam smo poiskali pomensko sorodne besede in na njih uporabili naučeni model. Tako smo pridobili kandidate za pare protipomenk in sopomenk. Točnost rezultatov smo ocenili na testni množici. Najbolje ocenjeni model dosega klasifikacijsko točnost 0.70.

Ključne besede

protipomenke;sopomenke;vektorske vložitve besed;strojno učenje;klasifikacija;računalništvo;računalništvo in informatika;računalništvo in matematika;interdisciplinarni študij;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [J. Pegan]
UDK: 004.85:81'373.422(043.2)
COBISS: 1538361795 Povezava se bo odprla v novem oknu
Št. ogledov: 766
Št. prenosov: 200
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Antonym detection with word embeddings
Sekundarni povzetek: This thesis aims to develop a classifier for antonym detection. A database of pre-made word embeddings for Slovene was used to create the solution. First we collected a learning set consisting of synonyms and antonyms. Then we searched for the most appropriate classification model. We observed some support vector machine models and some deep neural networks. We applied the learned model to groups of words closest to the selected words. Thus, we obtained candidates for pairs of synonyms and antonyms. The accuracy of the results set was evaluated on the test set. The top rated model reaches classification accuracy of 0.70.
Sekundarne ključne besede: antonyms;synonyms;word embeddings;machine learning;classification;computer science;computer and information science;computer science and mathematics;interdisciplinary studies;diploma;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000407
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 41 str.
ID: 11225347
Priporočena dela:
, zbirnik za spletne brskalnike
, diplomsko delo