delo diplomskega seminarja

Povzetek

V tem delu se spoznamo s Sturm-Liouvilleovo teorijo, ki predstavlja močno orodje za obravnavo različnih problemov. Diferencialne enačbe, ki pogosto nastopajo v modelu nekega fizikalnega pojava, lahko prevedemo na problem iskanja lastnih vrednosti in lastnih funkcij diferencialnega operatorja. Izkaže se, da je sistem lastnih funkcij pri določenih pogojih kompleten, zato lahko rešitve začetne diferencialne enačbe izrazimo kot linearne kombinacije lastnih funkcij. Tak način reševanja diferencialnih enačb najprej demonstriramo na primeru Besselove enačbe, ki jo dobimo iz večrazsežne valovne enačbe, potem pa se dotaknemo še osnovnih pojmov kvantne mehanike in prek metode separacije spremenljivk rešimo Schrödingerjevo enačbo za problem kvantnega harmoničnega oscilatorja.

Ključne besede

matematika;Sturm-Liouville;kompletnost;Besselova enačba;kvantna mehanika;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [Ž. Hafner Petrovski]
UDK: 517.9
COBISS: 18821465 Povezava se bo odprla v novem oknu
Št. ogledov: 1162
Št. prenosov: 168
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: On Sturm-Liouville theory
Sekundarni povzetek: In this paper we discuss the Sturm-Liouville theory, which has proven to be a useful tool when dealing with a variety of problems. Differential equations that often present themselves when modelling physical phenomena can be reduced to the problem of finding eigenvalues and eigenfunctions of a differential operator. It happens to be that the system comprised of all eigenfunctions is complete under certain conditions and that, therefore, each possible solution of the differential equation can be expressed as a linear combination of the eigenfunctions. We demonstrate this method of solving differential equations in the case of the Bessel equation, which we derive from the multidimensional wave equation. We also acquaint ourselves with the very basics of quantum mechanics and via the method of separation of variables solve the Schrödinger equation for the problem of quantum harmonic oscillator.
Sekundarne ključne besede: mathematics;Sturm-Liouville;completeness;Bessel equations;quantum mechanics;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 33 str.
ID: 11228327