delo diplomskega seminarja
Sara Kovačič (Avtor), Aljoša Peperko (Mentor)

Povzetek

V delu je predstavljena regresija z Gaussovimi procesi iz vidika uteženega prostora in s pogledom iz prostora funkcij. Ponovljenih je nekaj osnov Bayesove statistike in lastnosti normalne porazdelitve. Za namene modeliranja in strojnega učenja je predstavljena tudi teorija učenja modela. Ker so z Gaussovimi procesi tesno povezane kovariančne funkcije, je predstavljenih nekaj najpogostejših kovariančnih funkcij. V empiričnem delu naloge sta opisana Pythonova knjižnica za strojno učenje Scikit-learn in primer regresije z Gaussovimi procesi na rezultatih nacionalnega preverjanja znanja za osnovnošolce iz leta 2019.

Ključne besede

matematika;Gaussovi procesi;kovariančne funkcije;regresija;strojno učenje;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FS - Fakulteta za strojništvo
Založnik: [S. Kovačič]
UDK: 519.2
COBISS: 18737241 Povezava se bo odprla v novem oknu
Št. ogledov: 1395
Št. prenosov: 264
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Gaussian process regression
Sekundarni povzetek: The thesis presents the Gaussian process regression from the weight space view and the function space view. It examines some of Bayesian statistics and normal distribution properties. For modeling and machine learning purposes the model learning theory is also presented. Since covariance functions are tightly connected to the Gaussian process the thesis contains a presentation of the most frequent covariance functions. The empirical part of the thesis includes a description of Python’s Scikit-learn machine learning library as well as an example of the Gaussian process regression based on the results of the 2019 national assessment of elementary school students in Slovenia.
Sekundarne ključne besede: mathematics;Gaussian processes;covariance functions;regression;machine learning;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Strani: 28 str.
ID: 11229752