delo diplomskega seminarja
Povzetek
V diplomski nalogi obravnavamo primera podatkov z manjkajočimi podatki in primer brez manjkajočih podatkov, ki izhajajo iz zaporedja slučajnih vektorjev, ki so neodvisno enako porazdeljeni z večrazsežno normalno porazdelitvijo s parametroma vektorjem matematičnega upanja in kovariančno matriko. Za vsako obliko podatkov lahko po metodi največjega verjetja izračunamo cenilki parametrov porazdelitve. Pristopov za izračun cenilke po metodi največjega verjetja je več, v delu obravnavamo pristopa z matričnim odvajanjem in matrično transformacijo. Obravnavamo še monoton vzorec, ki je poseben primer manjkajočih podatkov, za katerega prav tako izračunamo cenilki za parametra po metodi največjega verjetja.
Ključne besede
matematika;večrazsežna normalna porazdelitev;metoda največjega verjetja;matrično odvajanje;monotoni vzorci;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2019 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FS - Fakulteta za strojništvo |
Založnik: |
[J. Munda] |
UDK: |
519.2 |
COBISS: |
18737497
|
Št. ogledov: |
1593 |
Št. prenosov: |
233 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Maximum likelihood estimation of the parameters of a multivariate normal distribution |
Sekundarni povzetek: |
In this paper we consider sample with missing data and sample without missing data, that comes from multivariate normal distribution with parameters mean vector and covariance matrix. No matter the shape of the data we can estimate parameters with maximum likelihood estimation. There are various techniques for estimating parameters with maximum likelihood estimation. We consider two techniques, namely, matrix differentiation and matrix transformation. With both techniques we must derivate likelihood function that we get from the sample. We also consider monotone sample, which is a special case of missing data for which we can also estimate parameters with method of maximum likelihood estimation. |
Sekundarne ključne besede: |
mathematics;multivariate normal distribution;maximum likelihood estimation;matrix differentiation;monotone sample; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Strani: |
28 str. |
ID: |
11229756 |