Povzetek

In this paper, we are dealing with quantitative Rellich inequalities on Finsler%Hadamard manifolds where the remainder terms are expressed by means of the flag curvature. By exploring various arguments from Finsler geometry and PDEs on manifolds, we show that more weighty curvature implies more powerful improvements in Rellich inequalities. The sharpness of the involved constants is also studied. Our results complement those of Yang, Su and Kong [Hardy inequalities on Riemannian manifolds with negative curvature, Commun. Contemp. Math. 16 (2014), Article ID: 1350043, 24 pp.].

Ključne besede

Rellich inequality;Finsler-Hadamard manifold;Finsler-Laplace operato;curvature;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 514.7
COBISS: 17651545 Povezava se bo odprla v novem oknu
ISSN: 0219-1997
Št. ogledov: 448
Št. prenosov: 329
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. ID 1650020 (17 str.)
Letnik: ǂVol. ǂ18
Zvezek: ǂno. ǂ6
Čas izdaje: 2016
DOI: 10.1142/S0219199716500206
ID: 11231237