magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
Povzetek
V klasični teoriji mehanike fluidov pri reševanju diferencialnih enačb na makroskopski prostorski skali običajno predpostavimo trivialni robni pogoj, ki predvideva, da med fluidom in steno ni zdrsa oziroma je točno ob steni relativna hitrost fluida glede na steno enaka nič. Ker fluid sestavljajo gibajoči se delci in ker so odboji delcev od realne stene v splošnem asimetrični, prej omenjeni robni pogoj velja le kot prostorsko povprečje in ne izraža celotnega vpliva stene na tokovne razmere. Prek analitičnih pristopov smo določili izraze za makroskopske veličine ob steni. Privzeli smo, da se fluid vede kot idealni plin in da delci sledijo zakonom klasične mehanike. Steno smo modelirali kot površino polnesknočnega monokristalnega telesa, katere obliko smo v vzdolžni smeri popisali kot periodično funkcijo oz. vrsto. Prek analitičnih modelov, ki določajo dinamiko odbojev delcev od površine, in formalizma kinetične teorije fluidov smo izpeljali izraze, ki določajo statistična povprečja hitrosti in elemente napetostnega tenzorja ob steni. Ugotovili smo, da so tudi te veličine periodične funkcije položaja vzdolž stene, kar predstavlja netrivialni robni pogoj. Robne pogoje te oblike smo upoštevali v analizi stabilnosti toka in določili njihov vpliv na pojav nestabilnosti. Dobljene rezultate smo primerjali z izsledki dosedanjih analiz na tem področju.
Ključne besede
magistrske naloge;statistična mehanika;kinetična teorija fluidov;monokristalna struktura;sipanje delcev;robni pogoji;tokovne nestabilnosti;
Podatki
| Jezik: |
Slovenski jezik |
| Leto izida: |
2019 |
| Tipologija: |
2.09 - Magistrsko delo |
| Organizacija: |
UL FS - Fakulteta za strojništvo |
| Založnik: |
[E. Istenič] |
| UDK: |
532:536.92:544.02(043.2) |
| COBISS: |
16957723
|
| Št. ogledov: |
1154 |
| Št. prenosov: |
276 |
| Ocena: |
0 (0 glasov) |
| Metapodatki: |
|
Ostali podatki
| Sekundarni jezik: |
Angleški jezik |
| Sekundarni naslov: |
The influence of the molecular fluid and boundary properties on the dynamics of gas flow |
| Sekundarni povzetek: |
When solving differential equations on macroscopic lenght scales, we usually impose the trivial no-slip boundary condition, which assumes zero fluid velocity relative to any boundaries. However, since fluids consist of moving particles which generally scatter from boundaries in an asymmetric manner, the aforementioned boundary condition only holds true as a spatial average and does not fully describe the effects of boundary properties on fluid flows. Theoretical methods were used to determine expressions for macroscopic quantities at solid boundaries. We assumed the fluid to behave as an ideal gas, with gas particles behaving classically. The boundary was modeled as the surface of a semi-infinite monocrystalline solid, with the potential energy field determining its shape varying in position as a periodic function or periodic function series. Using theoretical scattering models and the formalism of the kinetic theory of fluids, we derived expressions describing statistical averages of velocity and stress tensor elements at the boundary. We demonstrated that these quantities are also periodic functions of position, which together represent a non-trivial boundary condition. Such boundary conditions were accounted for in the analysis of fluid stability, which allowed us to determine their influence on instability onset. Results were compared to findings available in literature. |
| Sekundarne ključne besede: |
statistical mechanics;kinetic gases theory;monocrystalline solid;particle scattering;boundary conditions;flow instabilities; |
| Vrsta dela (COBISS): |
Magistrsko delo/naloga |
| Študijski program: |
0 |
| Konec prepovedi (OpenAIRE): |
1970-01-01 |
| Komentar na gradivo: |
Univ. Ljubljana, Fak. za strojništvo |
| Strani: |
XXI, 78 str. |
| ID: |
11270681 |