Bruno Bertini (Avtor), Pavel Kos (Avtor), Tomaž Prosen (Avtor)

Povzetek

We consider a class of quantum lattice models in 1 + 1 dimensions represented as local quantum circuits that enjoy a particular dual-unitarity property. In essence, this property ensures that both the evolution in time and that in space are given in terms of unitary transfer matrices. We show that for this class of circuits, generically nonintegrable, one can compute explicitly all dynamical correlations of local observables. Our result is exact, nonpertubative, and holds for any dimension d of the local Hilbert space. In the minimal case of qubits (d=2) we also present a classification of all dual-unitary circuits which allows us to single out a number of distinct classes for the behavior of the dynamical correlations. We find noninteracting classes, where all correlations are preserved, the ergodic and mixing one, where all correlations decay, and, interestingly, also classes that are both interacting and nonergodic.

Ključne besede

kvantna statistična mehanika;quantum statistical mechanics;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.93
COBISS: 3389028 Povezava se bo odprla v novem oknu
ISSN: 0031-9007
Št. ogledov: 589
Št. prenosov: 569
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna statistična mehanika;
Strani: str. 210601-1-210601-6
Letnik: ǂVol. ǂ123
Zvezek: ǂiss. ǂ21
Čas izdaje: 2019
DOI: 10.1103/PhysRevLett.123.210601
ID: 11310541