diplomsko delo
Urban Tanko (Avtor), Danijel Skočaj (Mentor)

Povzetek

Pri generiranju slik se vse več uporabljajo metode GAN. Ena od slabosti je dolgotrajnost njihovega učenja. V diplomski nalogi jo poskusimo odpraviti z uporabo modelov za translacijo med slikami, s katerimi želimo izboljšati kvaliteto generiranih slik. To storimo tako, da zberemo podatkovno množico in na njej naučimo model za generiranje slik StyleGAN. Generirane slike nato poženemo skozi naslednje modele za translacijo med slikami: SR-GAN, Pix2pix, CycleGAN, Pix2pixHD, U-GAT-IT in DeblurGAN. Za vsakega od modelov opišemo generirane slike in jih ocenimo z metriko FID ter človeško oceno, pridobljeno z uporabo ankete. Pridobljene rezultate tudi primerjamo med seboj.

Ključne besede

strojno učenje;umetna inteligenca;nevronske mreže;generativne nasprotniške mreže;translacija med slikami;podatkovna množica;ekstrakcija podatkov;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [U. Tanko]
UDK: 004.85(043.2)
COBISS: 1538565827 Povezava se bo odprla v novem oknu
Št. ogledov: 937
Št. prenosov: 225
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Improving the quality of generated images using image-to-image translation models
Sekundarni povzetek: The application of GAN methods for the purpose of image synthesis has grown considerably. One of their weaknesses is long training time. In this thesis we try to eliminate it by using image-to-image translation models to improve generated image quality. We first gather our dataset and train an image synthesis model StyleGAN. We then feed the generated images into various image-to-image translation models: SR-GAN, Pix2pix, CycleGAN, Pix2pixHD, U-GAT-IT in DeblurGAN. For each of the models we describe the visual properties of generated images. We also calculate the FID scores and human scores, obtained with a survey. At the end we compare the results of the models.
Sekundarne ključne besede: machine learning;artificial intelligence;neural networks;generative adversarial networks;image-to-image translation;dataset;data scraping;computer and information science;diploma;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 83 str.
ID: 11502266