Povzetek

We consider a nonlinear optimal control problem with dynamics described by a differential inclusion involving a maximal monotone map ▫$A \colon \mathbb{R}^N \to 2^{\mathbb{R}^N}$▫. We do not assume that ▫$D(A) = \mathbb{R}^N$▫, incorporating in this way systems with unilateral constraints in our framework. We present two relaxation methods. The first one is an outgrowth of the reduction method from the existence theory, while the second method uses Young measures. We show that the two relaxation methods are equivalent and admissible.

Ključne besede

admissible relaxation;maximal monotone map;Young measure;convex conjugate;weak norm;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.91
COBISS: 18921817 Povezava se bo odprla v novem oknu
ISSN: 1664-3607
Št. ogledov: 429
Št. prenosov: 221
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 2050004 (24 str.)
Letnik: ǂVol. ǂ10
Zvezek: ǂiss. ǂ1
Čas izdaje: Apr. 2020
DOI: 10.1142/S1664360720500046
ID: 11763960
Priporočena dela:
, ni podatka o podnaslovu
, magistrsko delo
, 2nd workshop on information theory and related fields, Bielefeld, January 31 - February 01, 2008